Influence of thermo hydrogen treatment on hot deformation behavior of Ti600 alloy
查看参考文献24篇
文摘
|
Hot compressive deformation of Ti600 alloy after thermo hydrogen treatment (THT) was carried out within hydrogen content range of 0-0.5%, temperature range of 760-920 ℃ and strain rate range of 0.01-10 s~(-1). The flow stress of Ti600 alloy after THT was obtained under hot deformation condition, and the influence of hydrogen on work-hardening rate (S~*), strain energy density (U~*), and deformation activation energy (Q) was analysed. The results show that the flow stress of Ti600 alloy decreases remarkably with the increase of hydrogen when the hydrogen content is less than 0.3%. Both S~* and U~* decrease with the increase of hydrogen when the hydrogen content is less than 0.3%, and when the hydrogen content is more than 0.3%, S~* and U~* increase with hydrogen addition. The value of Q decreases with the increase of strain at the same hydrogen content. The addition of small quantity of hydrogen leads to an increase of Q at small strain values, and when the strain reaches 0.6, the value of Q decreases gradually with the increase of hydrogen. When the hydrogen content is within the range of 0.1%-0.3%, the flow stress of Ti600 alloy is decreased when being deformed at the temperature range of 760-920 ℃. |
来源
|
Transactions of Nonferrous Metals Society of China
,2009,19(1):65-71 【核心库】
|
DOI
|
10.1016/s1003-6326(08)60230-7
|
关键词
|
Ti600 alloy
;
thermo hydrogen treatment
;
hot deformation
;
flow stress
;
activation energy
|
地址
|
1.
Beijing Aeronautical Manufacturing Technology Research Institute, Liaoning, Shenyang, 110004
2.
School of Materials and Metallurgy, Northeastern University, Liaoning, Shenyang, 110004
3.
Beijing Aeronautical Manufacturing Technology Research Institute, Beijing, 100024
4.
School of Materials and Metallurgy, Northeastern University, Beijing, 100024
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1003-6326 |
学科
|
金属学与金属工艺 |
基金
|
国家973计划
|
文献收藏号
|
CSCD:3563624
|
参考文献 共
24
共2页
|
1.
SENKOV O N. Thermohydrogen processing of titanium alloys.
International Journal of Hydrogen Energy,1999,24(6):565-576
|
CSCD被引
73
次
|
|
|
|
2.
LIN Ying-ying. Hydrogen treatment and its effect on superplasticity of titanium alloys.
Materials Engineering(in Chinese),2005,5:60-64
|
CSCD被引
1
次
|
|
|
|
3.
TAL-GUTELMACHER E. Investigation of hydrogen-deformation interactions in β-21S titanium alloy using thermal desorption spectroscopy.
Journal of Alloys and Compounds,2007,440(1/2):204-209
|
CSCD被引
15
次
|
|
|
|
4.
SHAN D B. The effect of hydrogen on the strengthening and softening of Ti-6Al-4V alloy.
Scripta Materialia,2008,58(6):449-452
|
CSCD被引
11
次
|
|
|
|
5.
LI Miao-quan. Effect of hydrogenation content on high temperature deformation behavior of Ti-6Al-4V alloy in isothermal compression.
International Journal of Hydrogen Energy,2008,33(11):2714-2720
|
CSCD被引
11
次
|
|
|
|
6.
ZHANG Yong. Hydrogen effects on high temperature deformation characteristics of a cast Ti-14Al-19Nb-3V-2Mo alloy.
Scripta Materialia,1997,37(9):1315-1321
|
CSCD被引
6
次
|
|
|
|
7.
KOLACHOV B A. Influence of hydrogen on hot deformability of titanium alloys with different phase compositions.
Titanium and Titanium Alloys:Scientific and Technological Aspects (Proceedings of the 3rd International Conference on Titanium),1982:1833-1842
|
CSCD被引
1
次
|
|
|
|
8.
KERR W R.
Pilot plant forging of hydrogenated Ti-6Al-4V.[AFWAL-TR-80-4026],1980
|
CSCD被引
1
次
|
|
|
|
9.
BIRLA N C. Dehydriding of Ti-6Al-2Sn-4Zr-6Mo hydride powder.
Powder Metallurgy,1975,18:15-31
|
CSCD被引
1
次
|
|
|
|
10.
LI Fang. Effect of hydrogen on the microstructure and high temperature mechanical properties of Ti-60 alloy.
Acta Metallurgica Sinica(in Chinese),2006,42(2):143-146
|
CSCD被引
2
次
|
|
|
|
11.
ZHANG Shao-qing. Effect of hydrogen on the superplasticity and microstructure of Ti-6Al-4V alloy.
Journal of Alloys and Compounds,1995,218:233-236
|
CSCD被引
1
次
|
|
|
|
12.
WEINEM D. Processing window of the near-α-titanium alloy TIMETAL-1100 to produce a fine-grained β-structure.
Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1996,206(1):55-62
|
CSCD被引
13
次
|
|
|
|
13.
EVANS R W. The effects of alpha-case formation on the creep fracture properties of the high-temperature titanium alloy IMI834.
Journal of Materials Processing Technology,1996,56(1/4):492-501
|
CSCD被引
9
次
|
|
|
|
14.
TETYUKHIN V. Heatresistant titanium alloys with enhanced,heat resistance,thermal stability.
Titanium'95:Science and Technology,1996:2430
|
CSCD被引
6
次
|
|
|
|
15.
HONG Quan. Effect of rolling process on microstructure and properties of Ti600 alloy plates.
Rare Metal Materials and Engineering(in Chinese),2005,34(8):1334-1337
|
CSCD被引
3
次
|
|
|
|
16.
QI Yun-lian.
Behavior and processing map of high temperature titanium alloy Ti600(in Chinese),2007
|
CSCD被引
1
次
|
|
|
|
17.
HONG Quan. Study on the microstruction characteristic and creep properties of Ti600 alloy.
Rare Metals Letters(in Chinese),2007,26(9):19-22
|
CSCD被引
1
次
|
|
|
|
18.
SHIH D S. Hydrogen embrittlement of α titanium:In situ TEM studies.
Acta Metallurgica,1998,36(1):111-124
|
CSCD被引
2
次
|
|
|
|
19.
BIRNBAUM H K. Hydrogen-enhanced localized plasticity-A mechanism for hydrogen-related fracture.
Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1994,176(1/2):191-202
|
CSCD被引
52
次
|
|
|
|
20.
SENKOV O N. Elastic moduli of titanium hydrogen alloys in the temperature range 20 ℃ to 1 100 ℃.
Metallurgica & Materials Transaction A,1996,27(12):3963-3970
|
CSCD被引
11
次
|
|
|
|
|