帮助 关于我们

返回检索结果

岩浆-热液体系成矿流体演化及其金属元素气相迁移研究进展
Advances of Researches on the Evolution of Ore-forming Fluids and the Vapor Transport of Metals in Magmatic-Hydrothermal Systems

查看参考文献114篇

文摘 本文从火山喷气、岩浆热液矿床的成矿流体性质、金属元素在蒸汽相中的溶解及在蒸汽/卤水相的分配实验等方面概述了有关金属元素气相迁移及CO_2在成矿过程中作用的研究现状.火山喷气的凝结物中高浓度的Cu、Zn、Pb、As、Ag和Au,以及斑岩型矿床中低密度流体包裹体(蒸汽相)中硫化物矿物的存在,预示着上述金属是以蒸汽相搬运的.金属元素在蒸汽相中溶解实验研究表明,金属元素在蒸汽相中以[Mex_m·(H_2O)_n.]水合物的形式存在,其溶解度随着H_2O逸度和HCI逸度的增大而增加;熔体一流体体系分配实验研究揭示,NaCl-H_2O体系中存在蒸汽-卤水相分离,在含S条件下Au、As等元素通常以HS-离子络合物的形式优先溶于蒸汽相,Fe、Zn、Pb、Mn、Cs等元素以Cl-离子络合物的形式优先富集于卤水相,Cu在富S热液中优先进入蒸汽相,在富Cl贫S热液中通常富集于卤水相,表明Cu在岩浆热液中是以HS-和Cl-两种络合物的形式迁移的.CO_2在Au、Cu等金属元素迁移和沉淀过程中可能起重要的作用,不仅促进NaCl-H_2O体系相分离,并且促使HS-络合物在蒸汽相富集以及调节成矿流体的酸碱度.斑岩型Cu-Au矿床的矿化过程可概括为3个阶段:高侵位的斑岩分异出的少量岩浆流体主要形成了青磐岩化带和部分钾硅化带,矿化通常不成规模;深部岩浆房早阶段去气作用分异出的岩浆流体主要在斑岩体早期钾化基础上叠加蚀变并形成广泛的浸染状矿化和石英-硫化物细脉,在斑岩体上部形成高级泥化带并形成低温热液型Cu-Au矿化,此阶段为主矿化期,深部岩浆房晚阶段去气作用形成的岩浆流体可能主要使斑岩体和部分围岩形成绢英岩化,并伴随晚期石英-(方解石)-硫化物脉的沉淀.
其他语种文摘 Based on the researches on volcanic degassing, characteristics of ore forming fluids in magmatic hydrothermal ore deposits and experiments on the metal dissolving in vapor and the partition of metals between vapor phase and brine phase, this paper has briefly decribed the advance of researches on the vapor transport of metals and the role of CO_2 in metallogentic process of the magmatic-hydrothermal system. The high concentration of Cu, Zn, Pb, As, Ag and Au in volcanic degassing sublimates and the presence of sulfides in low density phase (vapor) of fluid inclusions of the porphyry-type deposits could indicate that those above metals were transported in vapor phase. The experiment of metal dissolving into vapor phase indicates that metals are dissolved into vapor phase in form of hydrate species such as MeX_m (H_2O)_n, with their solubility increasing sharply due to the increase of water fugacity and HC1 fugacity of the vapor phase. The experiment of melt-fluid partition coefficient of metals shows that there is phase separation between vapor and brine in the NaCl-H_2O system, Au and As are normally in favor to be dissolved into the vapor phase in form of HS~-complex in the S-bearing system, whereas Fe, Zn, Pb, Mn, Cs are dissolved in favor into the brine phase in form of chloride complex. Cu is favorablely partitioned into the vapor phase in the sulfur-rich systems, but favorablely partitioned into the brine phase in the chlorine-rich sulfur-free system. This suggests that Cu could be transported in form of chloride complex or HS-complex in magmatic fluids. CO_2 could have played important role in the processes of transport and precipitation of Au, Cu and other metals. Firstly, the COz could cause phase separation between magma and magmatic fluids and between the CO_2-rich vapor phase and the brine phase of the mgmatic fluids due to the increase of T-P range of immiscibilities among them. Secondly, it could cause the enrichment of HS-complex into vapor phase. Thirdly, the acidity of ore-forming fluids also could be changed due to the existence of CO_2,The mineralization process for Porphyry Cu-Au deposit could be roughly divided into three stages. Firstly, a small amount of magmatic fluids derived from the emplaced porphyry could result in wide proplytic alteration and partly potassic alteration with weak mineralization in the porphyry. Secondly, the critical magmatic fluids derived from early stage of magma degassing in deep magma chamber could strengthen the alteration of the porphyry and form the main stage Cu-Au mineralization in forms of dissemination and quartz-sulfide networking veinlets overlapped on the early potassic altered porphyry, and could result in advanced argillic alteration with the epithermal Cu-Au mineralization in the high-level of the porphyry. Thirdly, the magmatic fluid derived from late stage of degassing in deep magma chamber could result in the phyllic alteration and quartz-(calcite)-sulfide vein type mineralization in top part or above the porphyry body.
来源 地质论评 ,2009,55(1):100-112 【核心库】
关键词 金属元素气相迁移 ; CO_2 ; 岩浆-热液体系
地址

中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002

语种 中文
文献类型 研究性论文
ISSN 0371-5736
学科 地质学
基金 国家自然科学基金
文献收藏号 CSCD:3560010

参考文献 共 114 共6页

1.  陈文明. 论斑岩铜矿的成因. 现代地质,2002,16(1):1-8 CSCD被引 17    
2.  陈衍景. 豫西金矿成矿规律,1992:1-234 CSCD被引 129    
3.  陈衍景. 陆内碰撞体制的流体作用模式及与成矿的关系:理论推导和东秦岭金矿床的研究. 地学前缘,1998,3(4):282-289 CSCD被引 1    
4.  陈衍景. 不同类型热液金矿系统的流体包裹体特征. 岩石学报,2007,23(9):2085-2108 CSCD被引 423    
5.  侯增谦. 埃达克岩:斑岩铜矿的一种可能的重要含矿母岩--以西藏和智利斑岩铜矿为例. 矿床地质,2003,22(1):1-12 CSCD被引 150    
6.  侯增谦. 初论陆-陆碰撞与成矿作用——以青藏高原造山带为例. 矿床地质,2003,22(4):319-333 CSCD被引 97    
7.  侯增谦. 西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束. 矿床地质,2005,24(2):108-121 CSCD被引 81    
8.  黄崇轲. 中国铜矿床,2001:663-674 CSCD被引 1    
9.  卢焕章. 流体包裹体,2004:1-487 CSCD被引 377    
10.  芮宗瑶. 中国斑岩铜(钼)矿,1984:1-350 CSCD被引 10    
11.  芮宗瑶. 斑岩铜矿研究中若干问题探讨. 矿床地质,2006,25(4):491-500 CSCD被引 49    
12.  涂光炽. 论改造成矿兼评现行矿床成因分类中的弱点. 地球化学文集,1986:1-7 CSCD被引 13    
13.  涂光炽. 关于CO2若干问题的讨论. 地学前缘,1996,3(3):53-62 CSCD被引 30    
14.  王守旭. 滇西北中甸普朗斑岩铜矿流体包裹体初步研究. 地球化学,2007,36(5):467-478 CSCD被引 40    
15.  曾普胜. 云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征. 岩石学报,2006,22(4):989-1000 CSCD被引 91    
16.  朱训. 德兴斑岩铜矿床,1983:1-336 CSCD被引 11    
17.  Archibald S M. The stability of Au--chloride complexes in water vapor at elevated temperatures and pressures. Geochimica et Cosmochimica Acta,2001,65(23):4413-4423 CSCD被引 27    
18.  Archibald S M. An experimental study of the stability of copper chloride complexes in water vapor at elevated temperatures and pressures. Geochimica et Cosmochimica Acta,2002,66(9):1611-1619 CSCD被引 27    
19.  Armellini F J. Solubility of sodium chloride and sulfate in sub-and supercritical water vapor from 450~550 ℃ and 100~250 bar. FLUID PHASE EQUILIBRIA,1993,84:123-142 CSCD被引 6    
20.  Audétat A. Formation of a magmatic-hydrothermal ore deposit:insights with LA-ICP-MS analysis of fluid inclusions. Science,1998,279(5359):2091-2094 CSCD被引 7    
引证文献 32

1 舒启海 内蒙古阿鲁科尔沁旗敖仑花斑岩铜钼矿床成矿时代和流体包裹体研究 岩石学报,2009,25(10):2601-2614
CSCD被引 23

2 徐佳佳 内蒙古道伦达坝铜多金属矿床成矿流体特征及其演化 岩石学报,2009,25(11):2957-2972
CSCD被引 14

显示所有32篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号