节流器内液-固两相流固体颗粒冲蚀数值模拟
Numerical simulation on solid particle erosion of solid-liquid two-phase fluid in flow controller
查看参考文献12篇
文摘
|
建立了考虑颗粒碰撞的颗粒冲蚀计算模型,该数学模型包括:在Eulerian坐标系下求解连续相流场;在Lagrangian坐标系下运用离散颗粒硬球模型求解颗粒碰撞;应用半实验关联式求解颗粒冲蚀速率。对水力加砂压裂施工中节流器内液-固两相流的固体颗粒运动和冲蚀特性进行了数值模拟。计算结果表明,固体颗粒密集于节流器入口到出口的一段狭长区域内,冲蚀速率随流体速度呈指数性变化。颗粒直径越大,冲蚀速率也越大。节流器内冲蚀最严重的位置发生在距离节流器出口上边缘10mm以内的局部区域。 |
其他语种文摘
|
A mathematic model of particle erosion under inter-particle collision was established. This mathematic model includes the flow field simulation of the continuous carrier fluid under Eulerian coordinate system, the inter-particle collision simulation using the discrete particle hard sphere model under Lagrangian coordinate system and the erosion rate calculation using semi-empirical formulations. The movement simulation of solid particle and the erosion characteristics of the solid-liquid two-phase fluid in flow controller under hydraulic sand fracturing operation showed that the particles were accumulated in a narrow region from inlet to outlet of the flow controller. The erosion rate was proportional to the inlet velocity with the exponential growth. The erosion rate increased with the increase of particle diameter. The most serious erosion in flow controller occurred on the upper region of the edge with 10 mm away from the outlet. |
来源
|
石油学报
,2009,30(1):145-148 【核心库】
|
关键词
|
水力加砂压裂
;
节流器
;
固体颗粒运动
;
液-固两相流
;
冲蚀速率
;
数值模拟
;
计算模型
|
地址
|
1.
西安交通大学, 动力工程多相流国家重点实验室, 陕西, 西安, 710049
2.
中国特种设备检测研究院, 陕西, 西安, 710021
3.
长庆石油勘探局井下技术作业处, 北京, 100080
4.
中国科学院力学研究所, 北京, 100013
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2697 |
学科
|
石油、天然气工业 |
基金
|
国家自然科学基金创新研究群体项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:3492218
|
参考文献 共
12
共1页
|
1.
田红. 渤海稠油油藏出砂规律室内模拟实验研究.
石油学报,2005,26(4):85-87, 92
|
CSCD被引
19
次
|
|
|
|
2.
王治中. 井筒砂粒运移规律室内模拟实验研究.
石油学报,2006,27(4):130-132, 138
|
CSCD被引
15
次
|
|
|
|
3.
Nesic S. Relationship between the structure of disturbed flow and erosion-corrosion.
Corrosion,1990,46(11):874-880
|
CSCD被引
5
次
|
|
|
|
4.
McLaury B S. Solid particle erosion in long radius elbows and straight pipes.
SPE 38842,1997
|
CSCD被引
1
次
|
|
|
|
5.
Habib M A. Numerical calculations of erosion in an abrupt pipe contraction of different contraction ratios.
International Journal for Numerical Methods in Fluids,2004,46(1):19-35
|
CSCD被引
3
次
|
|
|
|
6.
Elghobashi S. On predicting particle-laden turbulent flows.
Applied Scientific Research,1994,52(4):309-329
|
CSCD被引
45
次
|
|
|
|
7.
Di Felice R. The voidage function for fluid-particle interaction systems.
International Journal of Multiphase Flow,1994,20(1):153-159
|
CSCD被引
128
次
|
|
|
|
8.
林建忠.
流-固两相拟序涡流及稳定性,2003:125-172
|
CSCD被引
2
次
|
|
|
|
9.
Humphrey J A C. Fundamentals of fluid motion in erosion by solid particle impact.
International Journal of Heat and Fluid Flow,1990,11(3):170-195
|
CSCD被引
19
次
|
|
|
|
10.
Zhang Yongli.
Application and improvement of computational fluid dynamics(CFD)in solid particle erosion modeling,2006
|
CSCD被引
1
次
|
|
|
|
11.
Chen Xianghui. Numerical and experimental investigation of the relative erosion severity between plugged tees and elbows in dilute gas/solid two-phase flow.
Wear,2006,261(8):715-729
|
CSCD被引
22
次
|
|
|
|
12.
Crowe C T.
Multiphase flows with droplets and particles,1998:112-165
|
CSCD被引
1
次
|
|
|
|
|