地理空间中不同分层抽样方式的分层效率与优化策略
Strata Efficiency and Optimization strategy of Stratified Sampling on Spatial Population
查看参考文献17篇
文摘
|
地理空间对象中分层抽样的效率受抽样总体的空间相关性特征限制,分层效率的提高源于两个方面,一是抽样总体的空间相关性会使分散的样本布局精度得到提高,二是先验知识使层内方差变小,只有在空间相关性特征较强时,追逐先验知识的分层方式才会比任意分层方式具有更好的分层效率,当空间相关性较弱时,知识分层并不会比任意分层得到更高的抽样精度,地理空间相关性特征对分层抽样设计有重要影响,而这在实际应用中往往被忽视。本文采用蒙特卡罗模拟抽样方法以山东省1985年和1995年细小非耕地地物面积比例的抽样调查为例分析了空间相关性特征对不同分层方式抽样效率的影响,并提出了地理空间对象中分层方式的优化选择策略。 |
其他语种文摘
|
Efficiency of stratified sampling for geospatial population is restricted by spatial auto- correlation. Strata efficiency origins from two aspects: the first is spatial auto-correlation, which makes sampling with dispersed distribution improve the accuracy; and the second is priori knowledge, which can make the variance smaller within strata than within the overall population. The strata efficiency for knowledge strata is more outstanding than that of arbitrary strata only in the geographical object with strong spatial auto-correlation; when the spatial auto-correlation is weak, knowledge will not be preferred to the arbitrary strata. Spatial auto-correlation has an important influence on stratified sampling design: Although a stratified statostoc always "gains" in terms of accuracy, the implementation of the technique is conditional, expensive and sometime unnecessary. This is often overlooked in practical application. Different stratified sampling surveys for the ratio of thin-non-cultivated component in Shandong Province are simulated by using Mento Carlo method. Simulated results validate the influence of spatial: auto-correlation on different stratified methods. Finally, this paper proposes optimization strategy of strata selection for geospatial objects. |
来源
|
地理科学进展
,2008,27(3):152-160 【核心库】
|
关键词
|
地理空间对象
;
空间相关性
;
分层抽样
;
分层效率
;
优化策略
|
地址
|
中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-6301 |
学科
|
数学;测绘学 |
基金
|
本文得到中国科学院知识创新项目(KZCX2-YW-308)
;
国家863计划
;
国家自然科学基金
|
文献收藏号
|
CSCD:3352948
|
参考文献 共
17
共1页
|
1.
Cochran W G.
Sampling Techniques.Third edition ed,1977
|
CSCD被引
1
次
|
|
|
|
2.
Kish L.
Survey Sampling,1985
|
CSCD被引
9
次
|
|
|
|
3.
Tobler W A. A Computer Movie Simulating Urban Growth in the Detroit Region.
Economic Geography,1970,46(2):234-240
|
CSCD被引
653
次
|
|
|
|
4.
Cliff A.
Spatial Autocorrelation,1973
|
CSCD被引
21
次
|
|
|
|
5.
Fisher M.
Spatial Analytical Perspectives on GIS,1996
|
CSCD被引
3
次
|
|
|
|
6.
Anselin L.
Spatial Econometrics:Methods and Models,1988
|
CSCD被引
124
次
|
|
|
|
7.
Goodchild M F. A framework for the areal interpolation of socio-economic data.
Environmental and Planning,1993,25:383-397
|
CSCD被引
27
次
|
|
|
|
8.
Haining R P.
Spatial Data Analysis:Theory and Practice,2003
|
CSCD被引
8
次
|
|
|
|
9.
Dunn R. Two-dimensional Systematic Sampling of Land Use.
Applied Statistics,1993,42(4):585-601
|
CSCD被引
5
次
|
|
|
|
10.
冯士雍.
抽样调查-理论、方法与实践,1996
|
CSCD被引
13
次
|
|
|
|
11.
赵宪文.
林业遥感定量估测,1997
|
CSCD被引
24
次
|
|
|
|
12.
吴炳方. 全国农情监测与估产的运行化遥感方法.
地理学报,2000,55(1):25-35
|
CSCD被引
73
次
|
|
|
|
13.
Wang J F. Spatial sampling design for monitoring the area of cultivated land.
International Journal of Remote Sensing,2002,23(2):263-284
|
CSCD被引
43
次
|
|
|
|
14.
LI L F. Optimal decision-making model of spatial sampling for survey of China's land with remotely sensed data.
Science in China. Series D, Earth Sciences (in English),2005,48(5):752-764
|
CSCD被引
5
次
|
|
|
|
15.
Goodchild M F. The application of advanced technology in assessing environmental impacts.
In Application of GIS to the Modeling of Non-point Source Pollutants in the Vadose Zone,1996:1-17
|
CSCD被引
1
次
|
|
|
|
16.
Anselin L. Local indicators of spatial association-lisa.
Geographical Analysis,1995,27(2):93-115
|
CSCD被引
1011
次
|
|
|
|
17.
Ord J K. Local spatial autocorrelation statistics:Distributional issues and application.
Geographical Analysis,1995,27(4):286-306
|
CSCD被引
168
次
|
|
|
|
|