帮助 关于我们

返回检索结果

高分辨率遥感图像融合的光谱保真问题
Spectral Fidelity in High-resolution Remote Sensing Image Fusion

查看参考文献11篇

文摘 分析高分辨率遥感图像融合光谱失真的原因,利用基于滤波原理的Wavelet、SFIM融合算法和基于统计原理的Gram-schmidt、PCI pansharp模块提供的融合算法对高分辨率遥感图像的代表QuickBird图像进行融合试验。结果表明:这四种融合算法虽都具有很好的光谱保真性,但从光谱保真度和高频信息融入度这两个方面的定量分析来看,基于统计原理的融合方法总体上优于基于滤波原理的融合方法,更适合于QuickBird高分辨率遥感图像的融合。
其他语种文摘 An effective image fusion technique can not only improve spatial details but also preserve the spectral information. Many research papers have reported the limitations of exiting fusion techniques. The most significant problem is spectral distortion. For IHS fusion, a common strategy is to match the Pan to the I band before the replacement, stretch the H and S bands before reversing HIS transform, or stretch individual I, H or S band with respect to individual data sets. In PCA fusion, the solutions are stretching the principal components to give a spherical distribution, or discarding the first principal component. By selecting these proper fusion techniques, successful results can be achieved for the fusion of SPOT Pan with MS images. However, these techniques are not efficient for the new high-resolution satellite images, such as IKONOS and QuiekBird images . This study analyses the reasons for spectral distortion in the new high-resolution image fusion. The research reveals two major reasons. One major reason for the distortion is the wavelength extension of the new satellite Pan image. The radiometrie difference between different sensors is also an important reason if the fusion images are from different sensor systems. Four image fusion algorithms have been employed to resolve the spectral distortion problem in the study of Quick-Bird image fusion. These are the filter-based algorithms such as Wavelet and SFIM transforms, and statistics-based algorithms such as Gram-sehmidit and PCI pansharp modules. The experimental results show that although all these four algorithms have good spectral fidelity property, the statistics-based algorithms are generally more efficient than filter-based algorithms through the quantitative statistical analysis of spectral fidelity and the ability of gaining high frequency information. But the research result is only for QB image.
来源 地球信息科学 ,2008,10(4):520-526 【扩展库】
关键词 高分辨率遥感图像 ; 光谱保真度 ; QuickBird图像
地址

福州大学环境与资源学院, 福建, 福州, 350002

语种 中文
文献类型 研究性论文
ISSN 1560-8999
学科 电子技术、通信技术;自动化技术、计算机技术
基金 福建省自然科学基金 ;  福建师范大学优秀青年骨干教师培养基金
文献收藏号 CSCD:3350547

参考文献 共 11 共1页

1.  Clayton D G. Gram-Schmidt orthogonalization. Applied Statistics,1971,20(3):335-338 CSCD被引 20    
2.  Krista Amolins. Wavelet based image fusion techniques-An introduction review and comparison. Photogrametry&Remote sensing,2007,62:249-263 CSCD被引 1    
3.  LIU J G. Smoothing filter-based intensity modulation:a spectral preserve image fusion technique for improving spatial details. Internationl Journal of Remote Sensing,2000,21(18):3461-3472 CSCD被引 101    
4.  Zhang Y. Understanding image fusion. Photogrametric Engineering&Remote Sensing,2004,70(6):657-661 CSCD被引 35    
5.  戴昌达. 遥感图像应用处理与分析,2004 CSCD被引 59    
6.  刘勇卫(译). 遥感精解,1993 CSCD被引 9    
7.  马艳华. 高空间分辨率和高光谱分辨率遥感图像的融合. 红外,2003(10):11-16 CSCD被引 5    
8.  徐涵秋. Landsat 7 ETM +影像的融合和自动分类研究. 遥感学报,2005,9(2):186-194 CSCD被引 19    
9.  徐涵秋. 基于影像的Landsat TM/ETM~+数据正规化技术. 武汉大学学报(信息科学版),2007,32(1):62-66 CSCD被引 48    
10.  李存军. 两种高保真遥感影像融合方法比较. 中国图象图形学报,2004,11(9):1375-1387 CSCD被引 2    
11.  . www.pcigeomatics.com CSCD被引 1    
引证文献 6

1 张治清 GEOEYE-1多光谱与全色影像融合的适应性及质量评价研究 西南师范大学学报. 自然科学版,2011,36(1):203-208
CSCD被引 1

2 韩冰 一种改进的SFIM高光谱图像融合算法 遥感信息,2012,27(5):44-47,54
CSCD被引 3

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号