文摘
|
针对粒子群算法的早熟收敛问题,提出一种新的基于群体适应度变化率自适应变异的粒子群优化算法.该算法根据群体适应度变化率自适应调整惯性权重的取值,根据当前种群的平均粒距对种群中部分粒子进行变异操作.自适应调整与变异操作能增强算法跳出局部最优的能力,增大寻找全局最优的几率.对几种典型函数的测试结果表明,新算法的全局搜索能力有了明显的提高,有效避免了早熟收敛问题. |
其他语种文摘
|
Considering the premature convergence problem of Particle Swarm Optimization(PSO),a new Adaptive Particle Swarm Optimization with Mutation(APSOwM) is presented based on the variance ratio of population’s fitness.During the running time,the inertia weight and the mutation probability are determined by two factors: the variance ratio of population’s fitness and the average distance of current population.The ability of APSOwM to break away from the local optimum and to find the global optimum is greatly improved by the adaptive mutation.Experimental results show that the new algorithm is with great advantage of convergence property over PSO,and also avoids the premature convergence problem effectively. |
来源
|
计算机工程
,2008,34(16):188-190 【核心库】
|
关键词
|
粒子群优化算法
;
自适应变异
;
早熟收敛
|
地址
|
中南大学信息科学与工程学院, 湖北, 长沙, 410083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3428 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
国家自然科学基金
;
国家教育部高等学校博士学科点专项科研基金
|
文献收藏号
|
CSCD:3344073
|
|
1.
Gaing Z L. A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System.
IEEE Transactions on Energy Conversion,2004,19(2):384-391
|
CSCD被引
71
次
|
|
|
|
2.
李朝荣. 基于PSO算法的神经网络集成入侵检测系统.
计算机工程,2007,33(14):123-124, 127
|
CSCD被引
4
次
|
|
|
|
3.
Shi Y. A Modified Swarm Optimizer.
Proc. of IEEE International Conference of Evolutionary Computation,1998
|
CSCD被引
1
次
|
|
|
|
4.
Clerc M. The Swarm and the Queen:Towards a Deterministic and Adaptive Particle Swarm Optimization.
Proc of the Congress of Evolutionary Computation,1999:1951-1957
|
CSCD被引
19
次
|
|
|
|
5.
高鹰. 免疫粒子群优化算法.
计算机工程与应用,2004,40(6):4-7
|
CSCD被引
75
次
|
|
|
|
6.
Shi Yuhui. Parameter Selection in Particle Swarm Optimization.
Proceedings of the 7th International Conference on Evolutionary Programming,1998:591-600
|
CSCD被引
6
次
|
|
|