喀斯特高原湖泊生物地球化学过程中的锌同位素特征
Zinc isotope characteristics in the biogeochemical process of karst plateau lakes
查看参考文献44篇
文摘
|
采用多接收电感耦合等离子体质谱仪(MC-ICP-MS)对喀斯特高原湖泊红枫湖、阿哈湖水体及其主要支流水体悬浮物和一些生物样品中的锌同位素进行了测定,测试精度小于0.11‰(2SD)。结果显示,红枫湖水体与其主要支流水体悬浮物中的δ~(66)Zn变化范围分别为-0.29‰~0.26‰和-0.04‰~0.48‰,阿哈湖水体与其主要支流水体悬浮物中的δ~(66)Zn变化范围分别为-0.18‰~0.27‰和-0.17‰~0.46‰,均表现出支流中的锌同位素组成较重的特点。两湖生物样品中的δ~(66)Zn变化范围较大,为-0.35‰~0.57‰,说明湖泊生态系统中各端员的锌同位素组成存在一定差异。根据同位素组成分析,湖泊主要入湖河流及所携带的陆源物质是阿哈湖泊水体中锌的主要来源,锌同位素是一种较好的物源示踪工具。红枫湖夏季δ~(66)Zn与Chla(叶绿素)呈显著的正相关(R=0.97),主要是藻类对锌的有机吸附和吸收过程导致锌同位素组成发生变化。此外,湖泊水体悬浮物中的锌同位素组成均在夏季较轻,表明大气的干湿沉降可能是一个较负的锌同位素源。水体悬浮物中的δ~(66)Zn变化范围小于生物样品中的δ~(66)Zn变化范围,说明由于生物作用过程导致的锌同位素分馏大于非生物过程。 |
其他语种文摘
|
The Zn isotopic compositions of SPM(suspended particulate materials)and biological samples from the Hongfeng Lake and the Aha Lake as well as their main branches were analyzed with multiple collector inductively coupled plasma-mass spectrometry.The results show that the variations in Zn isotopic composition of SPM in the Aha Lake and in its main branches are-0.18‰-0.27‰ and-0.17‰-0.46‰ respectively,while the variations in the Hongfeng Lake and in its main branches are-0.29‰-0.26‰ and-0.04‰-0.48‰ respectively,indicating that the heavy zinc isotopes are enriched in the SPM in their branches.The zinc isotope compositions in biological material show a larger variation from-0.35‰ to 0.57‰,suggesting that different materials from the lacustrine ecosystem have their respective unique isotopic signatures.It is shown that the zinc isotope composition in the Aha Lake is mainly controlled by the water inputs from the catchment,and hence the zinc isotope composition can be used as a good tracer of source materials.It is also found that δ~(66)Zn variation versus chlorophyll contents shows positive correlation(R=0.97)in the Hongfeng Lake in summer,which can be probably ascribed to the process of adsorption or absorption of zinc onto algae.In addition,the zinc isotope ratio of SPM in the Hongfeng and Aha Lakes in summer is lower than that in winter,implying that the atmospheric deposition might have served as another significant source of lighter zinc isotopes.Moreover,the variation of δ~(66)Zn values in biological material is wider than that in SPM,indicating that inorganic processes controlling zinc isotope fractionation should be of subordinate importance compared with biological factors. |
来源
|
岩石矿物学杂志
,2008,27(4):326-334 【核心库】
|
关键词
|
锌同位素
;
悬浮物
;
生物样品
;
示踪
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550002
2.
中国地质科学院地质研究所, 国土资源部同位素重点实验室, 北京, 100049
3.
中国地质科学院地质研究所, 国土资源部同位素重点实验室, 北京, 100037
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6524 |
学科
|
地质学;环境科学基础理论 |
基金
|
中国科学院创新团队国际合作伙伴计划
;
国家自然科学基金重点项目(90610037,40331005)和"西部之光"联合资助项目
|
文献收藏号
|
CSCD:3339999
|
参考文献 共
44
共3页
|
1.
李津. 酸度在多接收等离子体质谱测试Cu的影响.
分析化学(待刊),2008
|
CSCD被引
3
次
|
|
|
|
2.
李世珍. 多接收器等离子体质谱法Zn同位素比值的高精度测定.
岩石矿物学杂志,2008,27(4):273-278
|
CSCD被引
18
次
|
|
|
|
3.
朱兆洲. 巢湖悬浮物中稀土元素(REE)的物源精确示踪作用.
湖泊科学,2006,18(3):267-272
|
CSCD被引
6
次
|
|
|
|
4.
Alloway B J.
Zinc in Soils and Crop Nutrition,2004
|
CSCD被引
5
次
|
|
|
|
5.
Asael D. Copper isotope fractionation in sedimentary copper mineralization(TLrrma Valley Israel).
Chem Geol,2007,243:238-254
|
CSCD被引
23
次
|
|
|
|
6.
Bermin J. The determination of the isotopic composition of Cu and Zn in seawater.
Chem Geol,2006,226:280-297
|
CSCD被引
21
次
|
|
|
|
7.
Eorrok D M. Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining.
Gcoehim Cosmochim Acta,2008,72:329-344
|
CSCD被引
1
次
|
|
|
|
8.
Budd P. Zinc isotope fractionation in liquid brass(Cu-Zn)alloy:potential environmental and archacological applications.
Geological Society London Special Publications,1999,165:147-153
|
CSCD被引
1
次
|
|
|
|
9.
Criss R E.
Principles of Stable Isotope Distribution,1999
|
CSCD被引
24
次
|
|
|
|
10.
Dolgopolova A. Use of isotope ratios to assess sources of Pb and Zn dispersed in the environment during mining and ore processing within the Orlovka-Spokoinoe mining site(Russia).
Appl Geochem,2006,21:563-579
|
CSCD被引
6
次
|
|
|
|
11.
G labsrt A. Interaction between zinc and freshwater and marine diatom species:Surface complexation and Zn isotope fractionation.
Geochim Cosmochim Aeta,2006,70:839-857
|
CSCD被引
1
次
|
|
|
|
12.
HutchinsonG E. A treatise on limnology.
Imroduction to Lake biology and limnoplankton,1967:115
|
CSCD被引
1
次
|
|
|
|
13.
John S G. The isotopic composition of some common forms of anthropogenic zinc.
Chem Geol,2007,245:61-69
|
CSCD被引
10
次
|
|
|
|
14.
Johnson C M. Overview and General Concepts.
Rev Mineral Geochem,2004,55:1-24
|
CSCD被引
12
次
|
|
|
|
15.
Lippard S J.
Principles of Bioinorganic Chemistry,1994:411
|
CSCD被引
4
次
|
|
|
|
16.
Liu C Q. Isotope geochemistry of Quaternary deposits from the arid lands in nortem China.
Earth Planet Sci Lett,1994,127:25-38
|
CSCD被引
39
次
|
|
|
|
17.
Luck J M. Pb,Zn and Cu isotopic variations and trace elements in rain.
Proc.5th Int.Syrup.of Geochemistry of the Earth's Surface,1999:199-202
|
CSCD被引
1
次
|
|
|
|
18.
Marcus C. The reduction and distillation of isotopically enriched zinc oxides under high vacuum conditious.
Nuclear Instruments and Methods in Physics Research Section A:Accelerators,1999,438:30-35
|
CSCD被引
3
次
|
|
|
|
19.
Mar(e)chal C N. Precise analysis of copper and zinc isotopic compesitions by plasma-source mass spectrometry.
Chem Geol,1999,156:251-273
|
CSCD被引
1
次
|
|
|
|
20.
Mar(e)chal C N. Abundance of zinc isotope as a marine biogcochemical tracer.
Geochern C,2000,1:1999
|
CSCD被引
1
次
|
|
|
|
|