脉冲激光相变硬化中的二维点阵光强分布设计
Intensity Distribution Design of Two-Dimensional Spot-Array for Pulsed Laser Transformation Hardening
查看参考文献11篇
文摘
|
激光强度空间分布是影响脉冲激光相变硬化效果的重要因素。现有的二维点阵光束按强度均匀分布设计,不能完全满足应用要求。为此提出基于有限元(FE)分析的光强空间分布逆向设计思路,并给出了实现方法。建立脉冲激光相变硬化有限元模型,考虑了材料热物性参数随温度的变化和相变过程,并用实验进行校核。研究了二维点阵分布参数对温度场的影响,从目标温度场和硬化层形貌出发对二维点阵的分布参数进行调整,获得优化的强度空间分布。针对汽车冲压模具表面强化的工艺要求,应用此方法设计出具有实用价值的激光强度空间分布。 |
其他语种文摘
|
Spatial intensity distribution is a critical factor of pulsed laser transformation hardening.The existing two-dimensional spot-array designed as uniform density distribution cannot satisfy application requirements completely.A reverse method was proposed to design the intensity distribution based on finite element(FE)analysis.A FE model for simulating pulsed laser transformation hardening was established.In the model,temperature-dependent thermo-physical properties of material and transformation were taken into account.Temperature field and shape of predicted hardening calculated from the model was verified with experimental results.Research on relationship between distribution parameters and temperature field was carried out.With the validated FE model,the target temperature field or shape hardening layer was achieved by adjusting distribution parameters of the spot-array,and the optimal design of the intensity distribution was subsequently obtained.Aiming at surface hardening requirements of automobile's stamping die,the method had been applied to gain an intensity distribution design with application value.The results showed that the method was feasible and capable of providing bases for designing shaping lens and making the design more predictable. |
来源
|
中国激光
,2008,35(2):287-290 【核心库】
|
DOI
|
10.3788/cjl20083502.0287
|
关键词
|
激光技术
;
脉冲激光相变硬化
;
有限元
;
光强空间分布
;
二维点阵
|
地址
|
中国科学院力学研究所, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0258-7025 |
学科
|
金属学与金属工艺;电子技术、通信技术 |
基金
|
中国科学院知识创新工程项目
|
文献收藏号
|
CSCD:3300538
|
参考文献 共
11
共1页
|
1.
Sindo KOH. A fundamental study of laser transformation hardening.
Metall. Tram. A,1983,14(3):643-653
|
CSCD被引
1
次
|
|
|
|
2.
R C Reed. Laser transformation hardening of steel:effects of beam mode, beam size, and composition.
Materials Science and Technology,1999,15(1):109-118
|
CSCD被引
8
次
|
|
|
|
3.
Paul R Woodard. Thermal analysis of a laser pulse for discrete spot surface transformation hardening.
J. Appl. Phys.,1999,85(5):2488-2496
|
CSCD被引
4
次
|
|
|
|
4.
虞钢.
集成化激光智能加工工程,2002
|
CSCD被引
14
次
|
|
|
|
5.
L.H.J.F Be&mann. Optical systems for high-power laser applications:principles and design aspects.
Optical and Qaantutn Electronies,1995,27(12):1407-1425
|
CSCD被引
1
次
|
|
|
|
6.
M R Taghizadeh. Design and fabrication of diffractive elements for laser material processing applications.
Optics and Lasers in Engineering,2000,34(4/6):289-307
|
CSCD被引
2
次
|
|
|
|
7.
高春林. 具有特殊衍射强度分布的二元位相光栅设计.
中国激光.A,2001,28(4):365-368
|
CSCD被引
6
次
|
|
|
|
8.
吴炜. 强度空间分布对脉冲激光表面强化的影响.
金属热处理,2005,30(10):30-35
|
CSCD被引
2
次
|
|
|
|
9.
谭真.
工程合金热物性,1994
|
CSCD被引
85
次
|
|
|
|
10.
赵志国. MoCu球铁激光淬火过程温度场的数值计算.
大连理工大学学报,1995,35(2):164-169
|
CSCD被引
6
次
|
|
|
|
11.
崔春阳. 球墨铸铁材料对激光的吸收率.
中国激光,2006,33(7):977-980
|
CSCD被引
6
次
|
|
|
|
|