基于协同感知的视觉选择注意计算模型
Visual Selective Attention Computational Model Based on Synergetic Perception
查看参考文献18篇
文摘
|
鉴于在任务相关的视觉注意中,需要建立基于任务的视觉注意显著图来引导视觉注意,为此利用与人认知过程相接近的协同感知理论来研究基于任务的视觉注意计算模型,即首先利用协同识别理论研究二义及多义模式的视觉感知,得到协同视觉感知理论;然后将协同视觉感知中的模式与从视觉注意模型中提取的底层视觉特征相对应,利用偏置矩阵的性质计算底层视觉特征问受任务影响而产生的偏置,再由此偏置和底层视觉特征生成基于任务的视觉注意显著图;最后提出了基于协同感知理论的视觉选择注意计算模型.该算法用于基于任务的视觉搜索的实验结果表明,该算法是有效的,在认知上是合理的. |
其他语种文摘
|
In the task-relevant visual attention, the saliency map based on task is required to be built to direct the visual attention. The synergetic perception theory which is similar to the cognition of the human is utilized to research the computational model of task-relevant visual attention. Firstly, the perception of ambiguous model is researched through the synergetic recognition theory. The synergetic visual perception theory is available. The patterns in the synergetic visual perception are corresponding to the visual features in the visual attention model. Then, the bias between the visual features influenced by the task is computed by the property of the bias matrix. The task-relevant visual attention saliency map is built from the bias and the visual features. Finally, a computational model of visual selective attention based on synergetic perception is presented. The algorithm is applied to the visual search task. The validity and the rationality in cognition of the algorithm are demonstrated through the experiments. |
来源
|
中国图象图形学报
,2008,13(1):129-136 【核心库】
|
关键词
|
视觉注意;任务相关;协同感知;计算模型
|
地址
|
1.
合肥工业大学计算机与信息学院图像信息处理研究室, 安徽, 合肥, 230009
2.
中国科学院合肥智能机械研究所仿生感知与控制研究中心, 安徽, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-8961 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
安徽省优秀青年科技基金
;
国家教育部新世纪优秀人才支持计划
|
文献收藏号
|
CSCD:3282563
|
参考文献 共
18
共1页
|
1.
Koch C. Shifts in selective visual attention:Towards the underlying neural circuitry.
Human Neurobiology,1985,4:219-227
|
CSCD被引
100
次
|
|
|
|
2.
Itti L.
Models of Bottom-Up and Top-Down Visual Attention,2000
|
CSCD被引
24
次
|
|
|
|
3.
Mahmood F.
Attentional Selection in Object Recognition,1993
|
CSCD被引
1
次
|
|
|
|
4.
Sun Yao-ru.
Hierarchical Object-Based Visual Attention for Machine Vision,2003
|
CSCD被引
5
次
|
|
|
|
5.
Jagersand M. Saliency maps and attention selection in scale andspatial coordinates:An information theoretic approach.
Proceedings of Fifth International Conference on Computer Vision,1995:195-202
|
CSCD被引
1
次
|
|
|
|
6.
Ferraro M. Entropy-based representation of image information.
Pattern Recognition Letters,2002,23(12):1391-1398
|
CSCD被引
3
次
|
|
|
|
7.
Ferroro M. Generalized spatio-chromatic diffusion.
Pattern Recognition Letters,2002,24(10):1298-1309
|
CSCD被引
1
次
|
|
|
|
8.
Kadir T.
Scale, Saliency and Scene Description,2002
|
CSCD被引
1
次
|
|
|
|
9.
Oliva A. Modeling the shape of the scene:A holistic representation of the spatial envelope.
International Journal of Computer Vision,2001,42(3):145-175
|
CSCD被引
221
次
|
|
|
|
10.
Oliva A. Top-down control of visual attention in object detection.
Proceedings of the IEEE International Conference on Image Processing 2003(ICIP'03),2003:253-256
|
CSCD被引
1
次
|
|
|
|
11.
Torrslba A. Contextual priming for object detection.
International Journal of Computer Vision,2003,53(2):169-191
|
CSCD被引
1
次
|
|
|
|
12.
Torralha A. Modeling global scene factors in attention.
Journal of Optical Society of America,2003,20(7):1407-1418
|
CSCD被引
1
次
|
|
|
|
13.
Itti L. A model of saliency-based visual attention for rapid scene analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259
|
CSCD被引
904
次
|
|
|
|
14.
Haken H.
Synergetic Computem and Recognition-A Top-down Approach to Neural Nets,1991
|
CSCD被引
1
次
|
|
|
|
15.
高隽.
人工神经网络原理及仿真实例,2003
|
CSCD被引
127
次
|
|
|
|
16.
Haken H. A brain model for vision in terms of synergetics.
Journal of Theoretical Biology,1994,171:75-85
|
CSCD被引
1
次
|
|
|
|
17.
Ditzinger T. A syncrgetic model for the verbal transformation effect.
Biological Cybernetics,1997,77(1):31-40
|
CSCD被引
2
次
|
|
|
|
18.
Gao Jun. Parnmetem optimization of synergetic recognition approach.
Chinese Janrnal of Electronics(English),2005,14(2):192-197
|
CSCD被引
4
次
|
|
|
|
|