帮助 关于我们

返回检索结果

江河源区高山嵩草(Kobresia pygmaea)草甸植物和土壤碳、氮储量对覆被变化的响应
The despondences of carbon and nitrogen reserves in plants and soils to vegetations cover change on Kobresia pygmaea meadow of Yellow River and Yangtze River source region

查看参考文献21篇

王启基 1   李世雄 1   王文颖 2   景增春 1  
文摘 以青海省果洛州藏族自治州甘德县青珍乡高山嵩草Kobresia pygmaea草甸轻度退化草地和重度退化草地为研究对象,通过植物地上部分主要功能群(禾草类、杂类草、莎草类)、植物根系和土壤碳、氮浓度及储量动态研究,结果表明:高寒小嵩草草甸轻度退化草地地上部分主要功能群碳、氮浓度和C∶N比值明显高于重度退化草地的浓度。同一草地类型主要功能群比较,碳、氮浓度依次为杂类草〉禾草类〉莎草类;植物地上部分的碳、氮浓度明显高于地下根系的碳、氮浓度。重度退化草地植物根系碳、氮浓度高于轻度退化草地植物根系碳、氮浓度。重度退化草地土壤总有机碳浓度显著低于轻度退化草地土壤总有机碳浓度,随着土层的加深碳、氮浓度有减少的趋势。江河源区高山嵩草草甸的土壤有机碳、氮储量最大,植物根系碳、氮储量居中,植物地上部分碳、氮储量最小。重度退化草地总有机碳储量(13554.3g/m~2)较轻度退化草地储量(14669.2g/m~2)下降7.60%。其中,0-40cm土壤层碳储量下降4.10%,植物根系碳储量下降59.97%,植物地上部分碳储量下降15.39%;重度退化草地总氮储量(3780.6g/m~2)较轻度退化草地储量(3352.7g/m~2)高12.76%,其中,0-40cm土壤中总氮储量高13.07%,植物根系全氮储量下降55.09%,植物地上部分全氮下降16.00%。由于草地退化损失有机碳11149kg/hm~2,而全氮增加4278kg/hm~2。
其他语种文摘 We conducted this study on lightly and severely degraded Kobresia pygmaea meadow in Qingzhen village,Gande County,Guoluo Prefecture,Qinghai Province.The purpose of this research was to compare carbon,nitrogen concentration,content of unit area and dynamics of aboveground parts,plants roots and soils depths to 40 cm between lightly and severely degraded Kobresia meadow.The results showed that the aboveground tissue C,N concentration and C∶N ratio was significantly higher in the lightly degraded grassland than in the severely degraded grassland.In addition,total carbon and total nitrogen concentration of aboveground tissue were forbs 〉 grasses 〉 sedges at the same grassland type.total carbon and total nitrogen concentration of belowground roots was significantly higher in the severely degraded grassland than in the lightly degraded grassland..Total carbon and nitrogen concentration was higher in the aboveground tissue than belowground roots.Total soil organic carbon concentration in severely degraded grassland was significantly lower than that in lightly degraded grassland,and decreased with depths.C and N content in unit area was soil depths 0-20 cm 〉 belowground root 〉 aboveground issue in the same grassland types.The total carbon content of unit area of aboveground tissue,roots and soil depths 0-40 cm(14669.2 g/m2)declined after degradation from lightly to severely degraded grassland(13554.3 g/m~2)7.60%,in which that of soil 0-40 cm declined 4.10%,that of belowground roots declined 59.97% and aboveground tissue declined 15.39%.The nitrogen content of unit area of aboveground tissue,roots and soil depths 0-40 cm(3352.7 g/m~2)increased after degradation from lightly to severely degraded grassland(3780.6 g/m~2)12.76%,in which that of soil 0-40 cm increased 13.07%,that of belowground roots declined 55.09% and aboveground tissue declined 16.00%.Thanks to degraded grassland,The total carbon lost 11149 kg/hm~2,and total nitrogen increased 4278 kg/hm~2.
来源 生态学报 ,2008,28(3):885-894 【核心库】
关键词 江河源区 ; 高山嵩草(Kobresia ; pygmaea)草甸 ; 覆被变化 ; 植物 ; 土壤 ; ; 氮储量
地址

1. 中国科学院西北高原生物研究所, 青海, 西宁, 810001  

2. 青海师范大学, 青海, 西宁, 810008

语种 中文
文献类型 研究性论文
ISSN 1000-0933
学科 植物学
基金 国家“十五”科技攻关重大项目 ;  青海三江源自然保护区生态保护和建设总体规划科研课题及应用推广项目 ;  国家自然科学基金
文献收藏号 CSCD:3257522

参考文献 共 21 共2页

1.  Martin H M. Odern global carbon cycle and the review of Arrhen is and Hog berm's prediction one hundred year sage. AMBIO,1997,26(1):17-24 CSCD被引 1    
2.  Lal R. Land use and soil management effects on emissions of radiatively active gases from two soils in Ohio. Soil Management and Greenhouse Effect,1995:41-59 CSCD被引 11    
3.  Wang G. Capacity of soil to protect organic carbon and biochemical characteristics of density fractions in Ziwulin Haplic Greyxems siol. Chinese Science Bulletin,2005,50(1):27-32 CSCD被引 7    
4.  Koto T. Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on Qinghai-Tibetan Plateau. Chi. Agric. For. Mctcorol,2004,124:121-134 CSCD被引 1    
5.  Gu S. Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan Plateau. J. Geophys. Res.,108(21) CSCD被引 1    
6.  Wang W Y. The Effect of Land Management on Carbon and Nitrogen Status in Plants and Soils of Alpine Meadows on The Tibetan Plateau. Land Degrad. Develop.,2005,16:405-415 CSCD被引 14    
7.  Tiessen H J. Cultivation effects on the amount and concentration of carbon, nitrogen and phosphorus in grassland soil. Agronomy Journal,1982,74:831 CSCD被引 8    
8.  Davidson E A. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry,1993,20:161-193 CSCD被引 135    
9.  Li L. Changes in soil carbon storage due to over-grazing in Leymus chinensis steppe in the Xilin river basin of Inner Mongolia. Journal of Environmental Science,1997,9(4):486-490 CSCD被引 15    
10.  Trimble S W. The cow as a geomorphic agent-a critical review. Geomorphlogy,1995,13:1-4 CSCD被引 2    
11.  王启基. 青海海北地区高山嵩草草甸植物群落生物量动态及能量分配. 植物生态学报,1998,27(3):222-230 CSCD被引 68    
12.  樊江文. 草地生态系统碳储量及其影响因素. 中国草地,2003,25(6):51-58 CSCD被引 60    
13.  王绍强. 中国陆地土壤有机碳库的估算. 地理研究,1999,18(4):349-356 CSCD被引 178    
14.  康兴成. 青藏高原地区近40年来气候变化的特征. 冰川冻土,1996,18(增刊):281-288 CSCD被引 47    
15.  王文颖. 江河源区高山嵩草草甸覆被变化对植物群落特征及多样性的影响. 资源科学,2006,28(2):118-124 CSCD被引 9    
16.  张全发. 植物群落演替与土壤发展之间的关系. 武汉植物学研究,1990,8(4):325-334 CSCD被引 37    
17.  王根绪. 土地覆盖变化对高山草甸土壤特性的影响. 科学通报,2002,47(23):1771-1777 CSCD被引 41    
18.  李希来. 不同地区矮嵩草(Kobresia humilis)种子解剖特征与萌发特性的研究. 种子,2002,6:12-13 CSCD被引 1    
19.  邓自发. 高等草甸小嵩草种群繁殖生态学研究. 西北植物学报,2002,22(2):344-349 CSCD被引 15    
20.  李希来. 不同退化程度“黑土滩”高山嵩草克隆生长特性. 草业学报,2003,12(3):51-56 CSCD被引 11    
引证文献 34

1 师生波 土壤干旱和强光交互作用对青藏高原高山嵩草光合功能的影响 草地学报,2017,25(4):724-731,748
CSCD被引 6

2 孙文义 三江源典型高寒草地坡面土壤有机碳变化特征及其影响因素 自然资源学报,2011,26(12):2072-2087
CSCD被引 15

显示所有34篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号