一株胶质芽胞杆菌对磷矿石风化作用的实验研究
THE ROLE OF A STRAIN OF Bacillus mucilaginosus ON WEATHERING OF PHOSPHORITE ROCK UNDER EXPERIMENTAL CONDITIONS
查看参考文献24篇
文摘
|
以一株质芽孢杆菌为例研究实验条件下微生物对磷矿石的风化作用。以直接作用和间接作用的方式研究培养基中胶质芽孢杆菌对磷矿粉的风化作用,即在装有100目磷矿石粉的液体培养基中接种,研究该菌对磷矿石粉的直接风化作用;同时,将装有100目磷矿石粉的透析袋放入液体培养基中再接入该菌,研究其对磷矿石粉的间接风化作用。按不同时间取培养液上清液,过滤,用电感耦合等离子体发射光谱(ICP—OES)测定滤液中Ca~(2+)、Mg~(2+)、Na~+、Mn~(2+)、Al~(3+)、Fe~(3+)和K~+等浓度,比色法测定水溶性P(Pws)和水溶性Si(Siws)的含量;滤膜上的固体物称重并消解后,同上方法测定Ca~(2+)、Mg~(2+)、Na~+、Mn~(2+)、Al~(3+)、Fe~(3+)和K~+等浓度以及Pws和Siws含量。此外,细菌风化作用后的矿物残渣用电子探针作表面微观形态分析和XRD矿物物相分析。结果表明:胶质芽孢杆菌对磷矿石粉风化的直接作用强度大于间接作用;对不同矿物的风化强度不同,对粘土矿物的风化作用较明显。提出细菌对磷矿石的风化作用源自细菌生长导致的机械破坏作用、胞外分泌物的生化降解作用以及多种因素之间的协同作用。 |
其他语种文摘
|
The authors have examined the microbiological weathering effect of phosphorite by using Bacillus mucilaginosus strain as an example under laboratorial conditions. In liquid culture, incubation in static state, the weathering of apatite with the bacteria was done by using the contrast method: apatite powder (100 mesh) was put in the liquid culture medium in a flask, the medium was autoclaved, followed by fungus inoculation for the study of direct weathering process; a dialysis bag with apatite powder ( 100 mesh ) was put in the liquid culture medium in the flask, the medium was autoclaved, followed by bacteria inoculation so as to study the indirect weathering process. The supernatants collected at different incubation periods were determined in terms of the concentrations of Ca~(2+) , Mg~(2+) , Na~+ , Mn~(2+) , Al~(3+) , Fe~(3+) and K~+ by ICP-OES. The contents of water soluble phosphorus (Pws) and silicon (Siws) were determined by colorimetry in the filtrate. The solids were quantified and digested on the filter paper. The main cation concentrations and Pws, Siws in digest liquid were measured by the above method. The remaining minerals were micromorphologically analyzed by means of an electron microprobe, and the mineral composition was determined by XRD. The results showed that the direct weathering process was stronger than the indirect one. B. mucilaginosus had a capability of weathering toward phosphorite, and stronger ability to clay minerals. Based on our experimental results, it is concluded that the mechanical breakage of bacterial growth, the bio-degradation of extra cellular macromolecules, and the integrated operation of many factors seem to be the reasons for the bio-weathering of minerals. |
来源
|
矿物学报
,2008,28(1):77-83 【核心库】
|
关键词
|
磷矿石
;
胶质芽孢杆菌
;
风化
;
机理
;
贵阳
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
地质学;微生物学 |
基金
|
国家973计划
;
中国科学院知识创新工程项目
;
中国科学院知识创新工程西部行动计划项目
|
文献收藏号
|
CSCD:3247809
|
参考文献 共
24
共2页
|
1.
克伦宾.
微生物地球化学,1990:138-139
|
CSCD被引
1
次
|
|
|
|
2.
Ademloa O A. Fungal degradation of calcium-, lead-and silicon-bearing minerals.
Biometals,2005,18:269-281
|
CSCD被引
1
次
|
|
|
|
3.
Burford E P. Fungal involvement in bioweathering and biotransformation of rocks and minerals.
Mineral Management,2003,67:1127-1155
|
CSCD被引
3
次
|
|
|
|
4.
Kucey R M N. Microbially mediated increases in plant-available phosphorus.
Advances in Agronomy,1989,42:199-228
|
CSCD被引
40
次
|
|
|
|
5.
Whitelaw M A. Phosphate solubilisation in solution culture by the soil fungus Penicillum radicum.
Soil Biology and Biochemistry,1999,31:655-665
|
CSCD被引
40
次
|
|
|
|
6.
Ullman W J. Laboratory evidence for microbially mediated silicate mineral dissolution in nature.
Chemical Geology,1996,132:11-17
|
CSCD被引
12
次
|
|
|
|
7.
Anna R. Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals.
FEMS Microbiology Ecology,2004,47:31-37
|
CSCD被引
3
次
|
|
|
|
8.
Gadd G M. Fungal production of citric and oxalic acid:importance in metal speciation, physiology and biogeochemical processes.
Advances in Microbial Physiology,1999,41:47-92
|
CSCD被引
22
次
|
|
|
|
9.
Jayasinghearachchi H S. Fungal solubilization of rock phosphate is enhanced by forming fungal-rhizobial biofilms.
Soil Biology and Biochemistry,2006,38:405-408
|
CSCD被引
4
次
|
|
|
|
10.
Vandevivere P. Attachment stimulates exopolysaccharide synthesis by a bacterium.
Applied and Environmental Microbiology,1993,59:3280-3286
|
CSCD被引
8
次
|
|
|
|
11.
Jongmans A G. Rock-eating fungi.
Nature,1997,389:682-683
|
CSCD被引
21
次
|
|
|
|
12.
Cameselle C. Iron removal from kaolin. Comparison betweenin situandtwo-stagebioleaching processes.
Hydrometallurgy,2003,68:97-105
|
CSCD被引
9
次
|
|
|
|
13.
Chen Y. Ability of Bacillus mucilaginosus GY03 Strain to Adsorb Chromium Ions.
Pedosphere,2005,15(2):225-231
|
CSCD被引
19
次
|
|
|
|
14.
Lian B. Study on flocculability of metal ions by bacillus mucilagiuosus GY03 strain.
Chinese Journal of Geochemistry,2004,23(4):380-386
|
CSCD被引
17
次
|
|
|
|
15.
段荔. 不同种类羧酸钠对草酸钙结晶过程中晶相的影响.
物理化学学报,2003,19(10):982-985
|
CSCD被引
2
次
|
|
|
|
16.
姚艳红. X-射线K值法测定硅铁中硅的含量.
分析化学,2002,30(5):639
|
CSCD被引
4
次
|
|
|
|
17.
连宾. 硅酸盐细菌GY92对伊利石的释钾作用.
矿物学报,1998,18(2):234-237
|
CSCD被引
28
次
|
|
|
|
18.
连宾. 硅酸盐细菌解钾作用机理的综合效应.
矿物学报,2002,22(3):179-183
|
CSCD被引
61
次
|
|
|
|
19.
Malinoskaya I M. The role of Bacillus mucilaginosus polysaccharide in the destruction of silicate minerals.
Mikrobiologiya,1990,59(1):70-78
|
CSCD被引
11
次
|
|
|
|
20.
Warren L A. Biogeochemical controls on metal behaviour in freshwater environments.
Earth-Science Reviews,2001,54:261-320
|
CSCD被引
16
次
|
|
|
|
|