基于改进线性光谱分离模型的植被覆盖度反演
Inversion of Canopy Abundance Based on Improved Linear Spectral Unmixing Model
查看参考文献18篇
文摘
|
线性光谱分离技术可以有效地提取像元水平上植被或其他端元(影像中的地物)的相对百分比,但是目前该技术在多光谱宽波段影像数据应用中,由于波段数量、波段宽度等的限制,估算精度离定量研究的水平仍有一定差距。鉴于此,本文提出了一种改进的线性光谱分离方法,该方法在对影像进行土地覆盖分类基础上进行分离,一方面同类土地覆盖类型内同种地物的光谱变异相对较小,更有利于端元选取;另一方面,分影像的地物种类数量明显少于整幅影像,更容易满足模型的适用条件,从而突破了波段数量限制,同时使地物光谱分离更具针对性,经过验证,该方法较传统分离方法相比植被覆盖度的反演精度可提高6.4%,用该方法实现了研究区的植被覆盖度的定量反演并对研究区植被覆盖度的空间结构进行了分析。 |
其他语种文摘
|
Linear Spectral Unmixing (LSU) could extract endmembers such as canopy or other objects at pixel level, but the accuracy of LSU which is presently used in muhispectral and relatively broad spectral range data is not available to quantitative research, so an improved technique for LSU which is based on the classification of land cover was employed in this study. First the ASTER image covered the study area was spatially segmented by five types of land cover maps. Sequentially based on the endmembers selection procedure the LSU was applied to each sub-ASTER image and full image respectively for subsequent comparative analysis. Because the number of objects in sub-image was less and the spectral variance of the same objects was smaller than the full image which is commonly used in traditional LSU, so this improved technique could break the limits of the traditional multispectral data which has less bands for hyperspectral analysis, and also, the mixed objects which occur in traditional LSU algorithm could be unmixed effectively by the new method. We concentrated our study on site of Fuzhou in Fujian Province equipped with ASTER data set. Only the first nine bands in VNIR and SWIR of ASTER were selected for subsequent analysis because the five TIR bands were not relevant to the reflectance of land surface objects. The result proved that an improved inversion accuracy of canopy abundance of - 6.4% was achieved comparing with traditional Linear Spectral Unmixing (LSU). Furthermore, following the inversion of canopy abundance using the improved method, density slice was applied to the canopy abundance image and the spatial distribution of canopy abundance was subsequently analyzed. |
来源
|
地球信息科学
,2008,10(1):114-120 【扩展库】
|
关键词
|
植被覆盖度
;
ASTER
;
线性光谱分离(LSU)
;
土地覆盖分类
|
地址
|
1.
福建师范大学地理科学学院, 福建, 福州, 350007
2.
中国科学院广州地球化学研究所, 广东, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
农业基础科学 |
基金
|
国家自然科学基金
;
福建省科技厅项目
;
福建省青年人才基金
;
福建师范大学研究生创新基金
|
文献收藏号
|
CSCD:3201391
|
参考文献 共
18
共1页
|
1.
牛宝茹. 干旱区植被覆盖度提取模型的建立.
地球信息科学,2005,7(1):84-86
|
CSCD被引
32
次
|
|
|
|
2.
潘耀忠. 中国土地覆盖综合分类研究──基于NOAA/AVHRR和Holdridge PE.
第四纪研究,2000,20(3):270-281
|
CSCD被引
49
次
|
|
|
|
3.
李苗苗. 密云水库上游植被覆盖度的遥感估算.
资源科学,2004,26(4):154-156
|
CSCD被引
4
次
|
|
|
|
4.
Chabrillat S. Ronda peridotite massif:Methodology for its geological mapping and litho logical discrimination from airborne hyperspectral data.
International Journal of Remote Sensing,2000,21:2363-2388
|
CSCD被引
9
次
|
|
|
|
5.
Settle J J. Linear mixing and the estimation of ground cover proportions.
International Journal of Remote Sensing,1993,14(6):1159-1177
|
CSCD被引
40
次
|
|
|
|
6.
罗红霞. 线性和非线性光谱混合模型模拟土壤、植被混光谱的效果分析.
测绘通报,2005(5):6-7
|
CSCD被引
5
次
|
|
|
|
7.
Green A A. A transformation for ordering multispectral data in terms of image quality with implications for noise removal.
IEEE Transactions on Geoscience and Remote Sensing,1988,26:65-74
|
CSCD被引
154
次
|
|
|
|
8.
赵英时. 美国中西部沙山地区环境变化的遥感研究.
地理研究,2001,20(2):215-216
|
CSCD被引
2
次
|
|
|
|
9.
万军. 应用线性光谱分离技术研究喀斯特地土地覆被变化--以贵州省关岭县为例.
地理研究,2003,22(4):443
|
CSCD被引
3
次
|
|
|
|
10.
李慧. 线性光谱混合模型的ASTER影像植被应用分析.
地球信息科学,2005,7(1):104-105
|
CSCD被引
1
次
|
|
|
|
11.
Qi J. Spatial and temporal dynamics of vegetation in the San Pedro River basin area.
Agricultural and Forest Meteorology,2000(105):55-68
|
CSCD被引
6
次
|
|
|
|
12.
Carlson T N. On the relation between NDVI, fractional vegetation cover, and leaf area index.
Remote Sensing of Environment,1997,62(3):241-252
|
CSCD被引
367
次
|
|
|
|
13.
Boardman J W. Mapping target signatures via partial unmixing of AVIRIS data.
Summaries, Fifth JPL Airborne Earth Science Workshop,1995:23-26
|
CSCD被引
3
次
|
|
|
|
14.
Boardman J W. Automating spectral unmixing of AVIRIS data using convex geometry concepts.
Summaries of the 4th Annual JPL Air-borne Geoscience Workshop, Pasadena,1993:11-14
|
CSCD被引
1
次
|
|
|
|
15.
Gong P. Forest canopy closure from classification and spectral unmixing of scene components multi-sensor evaluation of an open canopy.
IEEE Transactions on Geoscience and Remote Sensing,1994,32(5):1607-1080
|
CSCD被引
1
次
|
|
|
|
16.
Fang Qiu. Spectral analysis of ASTER data covering part of the Neoproterozoic Allaqi-Heiani suture, Southern Egypt.
Journal of African Earth Sciences,2006,44:170-171
|
CSCD被引
1
次
|
|
|
|
17.
Dymond J R. Percent vegetation cover of a degrading rangeland from SPOT.
International Journal of Remote Sensing,1992,13(11):1999-2007
|
CSCD被引
50
次
|
|
|
|
18.
Boardman J W. Automatic spectral analysis:Geological example using AVIRIS data.
10th Thematic Conference on Geologic Remote Sensing,1994:407-418
|
CSCD被引
2
次
|
|
|
|
|