Detonation initiation developing from the Richtmyer–Meshkov instability
查看参考文献17篇
文摘
|
Detonation initiation resulting from the Richtmyer–Meshkov instability is investigated numerically in the configuration of the shock/spark-induced-deflagration interaction in a combustive gas mixture. Two-dimensional multi-species Navier–Stokes equations implemented with the detailed chemical reaction model are solved with the dispersion-controlled dissipative scheme. Numerical results show that the spark can create a blast wave and ignite deflagrations. Then, the deflagration waves are enhanced due to the Richtmyer–Meshkov instability, which provides detonation initiations with local environment conditions. By examining the deflagration fronts, two kinds of the initiation mechanisms are identified. One is referred to as the deflagration front acceleration with the help of the weak shock wave, occurring on the convex surfaces, and the other is the hot spot explosion deriving from the deflagration front focusing, occurring on the concave surfaces. |
来源
|
Acta Mechanica Sinica
,2007,23(4):343-349 【核心库】
|
DOI
|
10.1007/s10409-007-0085-2
|
关键词
|
Hot spot
;
Deflagration front acceleration
;
Detonation initiation
;
Richtmyer
;
Meshkov instability
|
地址
|
LHD, Institute of Mechanics, CAS, Beijing, 100080
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
0567-7718 |
学科
|
力学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:3087986
|
参考文献 共
17
共1页
|
1.
Urtiew E. Experimental observations of the transition to detonation in an exploding gas.
Proc. R. Soc. Lond. A,1966,295:13-18
|
CSCD被引
1
次
|
|
|
|
2.
Lee J H S. The mechanism of transition from deflagration to detonation in vapor cloud explosions.
Prog. Energy Combust. Sci,1980,6:359-389
|
CSCD被引
10
次
|
|
|
|
3.
Oran E S. Deflagrations, hot spots, and the transition to detonation.
Phil. Trans. R. Soc. Lond. A,1999,387:3539-3551
|
CSCD被引
1
次
|
|
|
|
4.
Khokhlov A M. Numerical simulation of deflagration-to-detonation transition:the role of shockflame interactions in turbulent flames.
Combust. Flame,1999,117:323-339
|
CSCD被引
36
次
|
|
|
|
5.
Lee J H S. Detonation waves in gaseous explosives.
Handbook of Shock Waves, vol. 3,2001:309-415
|
CSCD被引
1
次
|
|
|
|
6.
Thomas G O. Some observations of the jet initiation of detonation.
Combust. Flame,2000,120:392-398
|
CSCD被引
7
次
|
|
|
|
7.
Khokhlov A M. Numerical simulation of detonation initiation in a flame brush:the role of hot spots.
Combust. Flame,1999,119:400-416
|
CSCD被引
15
次
|
|
|
|
8.
Brown C J. Experimental studies of shockinduced ignition and transition to detonation in ethylene and propane mixtures.
Combust. Flame,1999,117:861-870
|
CSCD被引
15
次
|
|
|
|
9.
Kaplan C R. Mechanism of ignition and detonation formation in propane-air mixtures.
Combust. Sci. Tech,1981,80:185-205
|
CSCD被引
1
次
|
|
|
|
10.
Chan C K. Collision of a shock wave with obstacles in a combustible mixture.
Combust. Flame,1995,100:341-348
|
CSCD被引
21
次
|
|
|
|
11.
Brown C J. Experimental studies of ignition and transition to detonation induced by the reflection and diffraction of shock waves.
Shock Waves,2000,10:23-32
|
CSCD被引
8
次
|
|
|
|
12.
Gelfand B E. Detonation and deflagration initiation at the focusing of shock waves in com-bustible gaseous mixture.
Shock Waves,2000,10:197-204
|
CSCD被引
25
次
|
|
|
|
13.
McBride B J.
NASA glenn coefficients for calculating thermodynamic properties of individual species NASA TP 2002-211556,2002
|
CSCD被引
1
次
|
|
|
|
14.
Jiang Z. On dispersion-controlled principles for non-oscillatory shock-capturing schemes.
Acta Mech. Sin,2004,20:1-15
|
CSCD被引
8
次
|
|
|
|
15.
Lee J H S. Comments on criteria for direct initiation of detonation.
Phil. Trans. R. Soc. Lond. A,1999,357:3503-3521
|
CSCD被引
12
次
|
|
|
|
16.
Kee R J.
Chemkin-Ⅲ:a fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. UC-405, SAND96-8216, May,1996
|
CSCD被引
1
次
|
|
|
|
17.
Brown EN. VODE, a variable-coefficient ode solver.
SIAM J. Sci. Stat. Comput,1989,10:1038-1051
|
CSCD被引
1
次
|
|
|
|
|