线性光谱混合模型影响因子不确定性定量研究
Study on Uncertainty of Environment Factors Relating to Linear Spectral Mixing Model
查看参考文献18篇
文摘
|
线性光谱混合模型(LinearSpectralMixingModel,LSMM)是一种像元分解模型,由于其简单和易操作性的特点,在目前亚像元研究中应用颇为广泛。其分离精度受多种因素的影响,但目前对该模型的研究多集中在对模型本身的线性假设评价及端元光谱选取方法上,而忽略了模型应用的环境条件(大气反射、散射、地形起伏等)对模型分解精度的影响等。本文以线性光谱模型提取植被分量为例,探讨环境大气条件、地形因素对模型精度影响的不确定性。研究将数据处理为四个层次,即原始的ASTER数据,利用MODTRAN进行大气校正的数据,经C-地形校正的数据,同时进行了大气校正和地形校正的数据。然后在四个层次上依次提取植被丰度,并将其和NDVI进行线性回归分析,检验植被丰度的分离精度,从而量化大气、地形等因子对LSMM的影响程度。研究结果表明:大气条件、地形因素都会制约LSMM分离精度的提高,特别在有地形起伏的中小空间尺度范围内,地形因子对线性光谱混合模型的影响远大于大气影响。 |
其他语种文摘
|
Linear Spectral Mixing Model (LSMM) is one of the pixel unmixing models. LSMM is prevailing presently in sub-pixel applications for it's simple and easy operational characteristics. The unmixing accuracy of LSMM is restricted by kinds of factors. However, the research on LSMM is focused on appraisement of linear hypothesis relating to itself and techniques used to select endmembers for the present. The environment conditions of the study area which could sway the unmixing accuracy such as atmospheric reflectance or scatteration and terrain undulation are not previously studied. This paper probes emphatically into the accuracy uncertainty of LSMM from atmospheric condition and terrain undulation by taking unmixing vegetation abundance based on LSMM as an example. Four levels of processing data sets were derived to conduct subsequent unmixing and comparison, namely, the first level which is related to the original ASTER data, the second level related to the data which perform an atmospheric correction using MODTRAN simulations, the third level related to the data which perform a terrain illumination correction equipped with C-correction Method, and the fourth level sequentially, related to the data which were applied to both atmospheric correction and terrain illumination correction. Then the vegetation abundances were extracted from the four processed data sets based on LSMM. The regression analysis between NDVI and vegetation abundance was further conducted to assess the unmixing accuracy which quantitatively measures the atmospheric effect and terrain illumination in the study site. The results indicate that both atmospheric condition and terrain un- dulation could constrain the application of LSMM. Especially, the effective removal or minimization of terrain effects is essential for LSMM applications to moderate or small-scale mountainous areas. |
来源
|
地球信息科学
,2007,9(6):49-53 【扩展库】
|
关键词
|
线性光谱混合模型(LSMM)
;
ASTER
;
地形校正
;
植被丰度
|
地址
|
福建师范大学地理科学学院, 福州, 350007
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
自动化技术、计算机技术 |
基金
|
福建省科技计划项目
|
文献收藏号
|
CSCD:3058497
|
参考文献 共
18
共1页
|
1.
张良培.
高光谱遥感,2005
|
CSCD被引
65
次
|
|
|
|
2.
Chabrillat S. Ronda peridotite massif:Methodology for its geological mapping and lithological discrimination from airborne hyperspectral data.
International Journal of Remote Sensing,2000,21:2363-2388
|
CSCD被引
9
次
|
|
|
|
3.
李慧. 线性光谱混合模型的ASTER影像植被应用分析.
地球信息科学,2005,7(1):103-106
|
CSCD被引
8
次
|
|
|
|
4.
Rober D A. Mapping Chaparral in the South Honica Mountains using multiple endmember spectral mixture models.
Remote Sens,1998,65:267-279
|
CSCD被引
1
次
|
|
|
|
5.
Joseph M Piwowar. Temporal mixture analysis of Arctic sea Ice imagery:A new approach for monitoring environmental change.
Remote Sens. Environ,1998,63:195-207
|
CSCD被引
4
次
|
|
|
|
6.
Zhou X T. Application of spectral mixture modeling to the regional assessment of land degradation: A case study from Basilicata, Italy.
Land Degradation & Rehabilitation,1994,5:215-222
|
CSCD被引
2
次
|
|
|
|
7.
Settle J J. Linear mixing and the estimation of ground cover proportions.
International Journal of Remote Sensing,1993,14(6):1159-1177
|
CSCD被引
40
次
|
|
|
|
8.
Boardman J W. Automatic spectral analysis:Geological example using AVIRIS data.
North Grapevine Mountain,1994,10:407-418
|
CSCD被引
1
次
|
|
|
|
9.
Green A A. A transformation for ordering muhispectral data in terms of image quality with implications for noise removal.
IEEE Transactions on Geoscience and Remote Sensing,1988,26:65-74
|
CSCD被引
154
次
|
|
|
|
10.
Boardman J W. Automating spectral unmixing of AVIRIS data using convex geometry concepts.
Summaries of the 4th Annum JPL Air-borne Geoscience Workshop,1993:11-14
|
CSCD被引
1
次
|
|
|
|
11.
Boardman J W. Mapping target signatures via partial unmixing of AVIRIS data.
Summaries, Fifth JPL Airborne Earth Science Workshop,1995:23-26
|
CSCD被引
3
次
|
|
|
|
12.
毛克彪. 大气辐射传输模型及MODTRAN中透过率计算.
测绘与空间地理信息,2004,27(4):1-4
|
CSCD被引
24
次
|
|
|
|
13.
王风敏. 基于ASTER数据反演我国南方山地陆表温度.
国土资源遥感,2005(1):30-33
|
CSCD被引
3
次
|
|
|
|
14.
何立明. 光学遥感大气订正模型及其相关问题分析.
地球信息科学,2005,7(4):33-38
|
CSCD被引
4
次
|
|
|
|
15.
Klaus I Itten. Geometric and radiometri ccorrection of TM data of mountainous forested areas.
IEEE Transactions on Geoscience and Remote Sensing,1993,31(4):764-770
|
CSCD被引
2
次
|
|
|
|
16.
Teillet P M. On the slope-aspect correction of multispectral scanner Data.
Can. J. Remote Sensing,1982,8(2):84-106
|
CSCD被引
2
次
|
|
|
|
17.
赵英时. 美国中西部沙山地区环境变化的遥感研究.
地理研究,2001,20:215-216
|
CSCD被引
2
次
|
|
|
|
18.
万军. 应用线性光谱分离技术研究喀斯特地区土地覆被变化--以贵州省关岭县为例.
地理研究,2003,22:443
|
CSCD被引
3
次
|
|
|
|
|