Cu/Sn63-Pb37偶对在模拟湿热大气环境中的电化学腐蚀
ELECTROCHEMICAL CORROSION BEHAVIORS OF THE GALVANIC COUPLE Cu/Sn63-Pb37 IN SIMULATED ATMOSPHERE
查看参考文献15篇
文摘
|
针对电子装备中Cu/Sn63-Pb37偶对在模拟湿热大气环境中(40℃,95%RH)的腐蚀特性,用薄液膜下原位零阻安培表腐蚀电化学测试技术结合SEN、Fr-IR及XRD等表面分析手段,获得了电偶对的阳极电偶电流密度和电偶电位随时间的变化规律及腐蚀试样表面形貌和腐蚀产物组成的信息,阐述了Cu与sn63-Pb37之间的电偶腐蚀特征和电化学机制,并揭示了金属表面腐蚀产物膜的形成进程及其对电偶腐蚀行为的影响。结果表明,Cu作为偶对中的阳极发生腐蚀而Sn63-Pb37作为阴极受到保护,腐蚀产物对Cu表面腐蚀进程具有阻滞作用,实验后期Sn63-Pb37表面的阴极活化作用加强,并破坏其表面的稳态氧化膜促使其发生腐蚀。 |
其他语种文摘
|
The Cu/Sn63-Pb37 galvanic couple appeared in most electronic devices.This paper was to investigate the corrosion characteristics and mechanisms of this couple,which was exposed in the typically simulated air condition at 40 ℃ with 95% RH.The in-situ electrochemical information of the couple have been performed with related zero resistance ampere techniques under thin moisture film.According to the time dependent features of galvanic potential and anodic galvanic current density results,the Cu acted as anode and the Sn63-Pb37 acted as cathode during exposure.The gradually formed corrosion products,which were detected by FT-IR and XRD,restrained the anodic polarization behavior occurring on Cu surface.The hydrolyzed CO_2 on the Sn63-Pb37 surface induced the breakdown of Pb oxides formed in air naturally,which was confirmed from the SEM surface morphologies.Despite of the exact corrosion rates not obtained from the galvanic current density data,the changing trend was valuable for estimating the atmospheric corrosion behavior of the Cu/Sn63-Pb37 couple. |
来源
|
中国腐蚀与防护学报
,2007,27(6):329-333 【核心库】
|
关键词
|
电偶腐蚀Cu
;
Sn63-Pb37焊料
|
地址
|
中国科学院金属研究所, 金属腐蚀与防护国家重点实验室, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-4537 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:3042579
|
参考文献 共
15
共1页
|
1.
Guttenplan J D. Corrosion control for electrical contacts in submarine based electronic equipment.
Mater Perform,1978,18(12):49-55
|
CSCD被引
1
次
|
|
|
|
2.
Sinclair J D. Corrosion of electronics.
J Electrochem Soc,1988,135(3):89
|
CSCD被引
1
次
|
|
|
|
3.
李青. 电子材料的腐蚀.
电子元件与材料,1996,15(6):48-50
|
CSCD被引
3
次
|
|
|
|
4.
Aastrup T. Experimental in situ studies of copper exposed to humidified air.
Corros Sci,2000,42:957-967
|
CSCD被引
11
次
|
|
|
|
5.
Shin B L. Electrochemical migration characteristics of eutectic SnPb solder alloy in printed circuit board.
Thin Solid Films,2006,504:294-297
|
CSCD被引
1
次
|
|
|
|
6.
Manning M I. Atmospheric corrosion issues today.
Industrial Corros,1989,7(8):5-9
|
CSCD被引
1
次
|
|
|
|
7.
Mattsson E. Corrosion:an electrochemical problem.
Chem Technol,1985,4:234-243
|
CSCD被引
2
次
|
|
|
|
8.
曹楚南.
腐蚀电化学原理,2004
|
CSCD被引
84
次
|
|
|
|
9.
徐俊丽. 大气腐蚀电化学监测的研究.
中国腐蚀与防护学报,1987,7(1):60-65
|
CSCD被引
10
次
|
|
|
|
10.
Zakipour S. Evaluation of laboratory tests to simulate indoor corrosion of electrical contact materials.
J Electrochem Soc,1986,133(1):21-30
|
CSCD被引
1
次
|
|
|
|
11.
Debiemme C. X-Ray photoemission investigation of the corrosion film formed on a polished Cu-13Sn alloy in aerated NaCl solution.
Appl Surf Sci,2001,174:55-61
|
CSCD被引
1
次
|
|
|
|
12.
Ryck I D. Study of tin corrosion:the influence of alloying elements.
J Cultural Heritage,2004,5:189-195
|
CSCD被引
2
次
|
|
|
|
13.
Mansfeld F. Galvanic corrosion of Al alloysⅢ The effect of area ratio.
Corros Sci,1975,15:239-250
|
CSCD被引
3
次
|
|
|
|
14.
Chen Z Y. The effects of sodium chloride particles on the atmospheric corrosion of pure copper.
Corrosion,2004,60(5):479-491
|
CSCD被引
5
次
|
|
|
|
15.
鲁永奎. 固态铅,锡及其合金表面腐蚀热力学.
北京科技大学学报,1989,11(2):167-172
|
CSCD被引
4
次
|
|
|
|
|