钛铝合金中的形变诱发γ→DI-α_2相变
Deformation-induced γ→DI-α_2 phase transformation of TiAl alloys
查看参考文献39篇
文摘
|
本文运用高分辨电子显微术研究了TiAl合金中形变诱发的γ→DI-2_α相变(本文中DI-表示形变诱发)。研究表明,无论是高温变形还是室温变形,形变诱发的γ→DI-α_2相变都可在孪晶交截等孪晶受阻的区域内发生。尽管变形条件截然不同,但该相变却未表现出任何差异。高分辨观察表明,DI-α_2相与γ基体之间仍然具有典型的取向关系:(001)_(DI-α2)//{111}γ,[11 20]_(DI-α2)//〈110〉γ。相变中,a/6〈11 2]Shockley不全位错交替地在{111}_γ面上运动使得堆垛顺序由有序的FCT型转变为非平衡的HCP结构,从而实现了结构的变化。X射线EDS成分分析表明,DI-α_2相与γ基体的成分完全相同,相变过程中无成分扩散。强烈的应力场是TiAl合金中形变诱发γ→DI-2_α相变的主要驱动力,对该相变的发生起主要作用。 |
其他语种文摘
|
This paper has studied the deformation-induced γ→DI-α_2 phase transformation of TiAl alloys using high-resolution electron microscopy. Studies revealed that the deformation-induced γ→DI-α_2 phase transformation could occur in the regions where a deformation twin was blocked during both high-temperature and room-temperature deformations. Though the deformation conditions were completely different, these phase transformations have not exhibited any difference. High-resolution image observations of the deformation-induced DI-α2 phase suggested that the orientation relationship between the DI-α2 and γ phases remained the typical one: (0001)_(DI-α2)//{111}_γ, [ 11 20]_(DI-α2)// 〈 110 〉 γ- The conversion of stacking sequence from ordered FCT to ordered non-equilibrium HCP structure was accomplished by the movement of a/6 〈 11 2] Shockley partial dislocations on every other {111}_γ plane. Compositional analysis based on X-ray energy dispersive spectroscopy (EDS) revealed that the DI-α_2 phase had the same composition as the matrix γ phase and no compositional diffusion occurred. The strong stress concentration in the intersection region was the major force to induce the γ→DI-α_2 phase transformation. |
来源
|
电子显微学报
,2007,26(4):276-287 【核心库】
|
关键词
|
钛铝合金
;
高分辨电子显微术
;
形变诱发相变
;
孪晶交截
|
地址
|
中国科学院金属研究所, 辽宁, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6281 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:2968334
|
参考文献 共
39
共2页
|
1.
Kim Y W. Progress in the understanding of gamma titanium aluminides.
JOM,1991,43:40-47
|
CSCD被引
83
次
|
|
|
|
2.
Kim Y W. Ordered intermetallic alloys, partⅢ:Gamma titanium aluminides.
JOM,1994,96:30-39
|
CSCD被引
148
次
|
|
|
|
3.
Appel F. Work hardening and recovery of gamma base titanium aluminides.
Intermetallics,1999,7:325-334
|
CSCD被引
4
次
|
|
|
|
4.
Maruyama K. Effects of lamellar boundary structural change on lamellar size hardening in TiAI alloy.
Acta Mater,2004,52:5185-5194
|
CSCD被引
5
次
|
|
|
|
5.
Appel F. Microstructure and deformation of twophase-titanium aluminides.
Mater Sci Eng R,1998,22:187-268
|
CSCD被引
71
次
|
|
|
|
6.
Calderon H A. Mechanical properties of nanocrystalline Ti-Al-X alloys.
Mater Sci Eng A,2002:196-205
|
CSCD被引
9
次
|
|
|
|
7.
Kishida K. Deformation and fracture of PST crystals and directionally solidified ingots of TiAl-based alloys.
Intermetallics,1998,6:679-683
|
CSCD被引
14
次
|
|
|
|
8.
Wu Y. Microstructural refinement and improvement of mechanical properties and oxidation resistance in EPM TiAl-based intermetallics with yttrium addition.
Acta Mater,2002,50:1479-1493
|
CSCD被引
17
次
|
|
|
|
9.
Kempf M. The mechanical properties of different lamellae and domains in PST-TiAI investigated with nanoindentations and atomic force microscopy.
Mater Sci Eng,2002:184-189
|
CSCD被引
1
次
|
|
|
|
10.
Appel F. Novel design concepts for gamma-base titanium aluminide alloys.
Intermetallics,2000,8:1283-1312
|
CSCD被引
42
次
|
|
|
|
11.
Marketz W T. Deformation mechanisms in TiAl intermetallics-experiments and modeling.
International Journal of Plasticity,2003,19:281-321
|
CSCD被引
19
次
|
|
|
|
12.
Kim H Y. Stability of lamellar microstructure of hard orientated PST crystal of TiAI.
Acta Mater,2003,51:2191-2204
|
CSCD被引
8
次
|
|
|
|
13.
Hirsinger L. Stress-induced phase transformations in Ni-Mn-Ga alloys:experiments and modeling.
Mater Sci Eng A,2004,378:365-369
|
CSCD被引
4
次
|
|
|
|
14.
Chien F R. Stress-induced martensitic transformation and ferroelastic deformation adjacent microhardness indents in tetragonal zirconia single crystals.
Acta Mater,1998,46:2151-2171
|
CSCD被引
2
次
|
|
|
|
15.
Mori T. Micromechanics of stress-induced martensitic transformation.
Mater Sci Eng A,2004,378:479-483
|
CSCD被引
1
次
|
|
|
|
16.
崔忠圻.
金属学与热处理(铸造、焊接专业用),1999:265-267
|
CSCD被引
1
次
|
|
|
|
17.
Howe J M. Atomic mechanisms of precipitate plate growth.
Philos Mag A,1987,56:31-61
|
CSCD被引
8
次
|
|
|
|
18.
Feng C R. The formation of Ti3 Al within TiAI during the deformation of XD^TM titanium aluminide.
Scr Metal,1989,23:241-246
|
CSCD被引
1
次
|
|
|
|
19.
Feng C R. Microstructural characteristics of two-phase titanium aluminides.
Mater Sci Eng A,1991,145:257-264
|
CSCD被引
2
次
|
|
|
|
20.
Zhang Y G. An evidence of stress-inducedα2→γtransformation in aγ-TiAl-based alloy.
Scr Metall Mater,1995,32:981-985
|
CSCD被引
2
次
|
|
|
|
|