机械合金化制备TiC/W纳米晶复合粉体的烧结特性
Sintering Property of TiC / W Nanocomposite Powders Prepared by Mechanical Alloying
查看参考文献14篇
文摘
|
利用高能机械球磨制备出W-10%TiC复合粉体并进行烧结,分析了粉体特性和烧结体的组织形貌。结果表明:球磨使引入的镍铁和钨形成固溶体,并且产生大量缺陷,从而促进烧结致密化。随着球磨时问的延长,粉体晶粒尺寸下降,点阵畸变逐渐增大,经过球磨后粉体具有较高的烧结活性,并且随着球磨时间的延长,复合粉体烧结后密度逐渐增加。烧结体显微组织均匀致密,没有问隙和空洞出现,其中钨颗粒近似呈球状,粒径为20~30μm,碳化钛颗粒基本保持原始颗粒大小(1~2μm)弥散分布在相邻的钨颗粒边界处;钨镍铁相呈网状组织包围着部分钨和碳化钛颗粒,其体积随着球磨时问延长而增加。 |
其他语种文摘
|
W-10% TiC composite powders were prepared by bail milling.Powder properties and structures of sintered samples were analyzed.The results show that Ni and Fe are induced into powders and large number of defects are formed.The powders have a higher sintering activity after ball milling.All these improve sintering densification of powders.Ni and Fe form (Ni,Fe,W) solid solution during mechanical milling.The grain size of powders decrease gradually,and the lattice distortion increase with increasing milling time.In the microstructure tungsten grains presente a sphere-like shape and have a size of 20—30μm and TiC particles keep their original size of 1—2μm and distributed at the tungsten grain boundaries,and there is no obvious hole or interstice in the sintering structure (Ni,Fe,W) phase surrounded tungsten grains as a reticulation and its volume increase with increasing ball milling time. |
来源
|
机械工程材料
,2007,31(7):4-7 【核心库】
|
关键词
|
钨碳化钛
;
高能球磨
;
纳米晶复合粉体
;
烧结特性
|
地址
|
1.
合肥工业大学材料科学与工程学院, 安徽, 合肥, 230009
2.
中国科学院等离子体物理研究所, 安徽, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3738 |
学科
|
一般工业技术;冶金工业 |
基金
|
合肥工业大学中青年创新基金
;
中国科学院等离子体物理研究所合作项目
|
文献收藏号
|
CSCD:2955126
|
参考文献 共
14
共1页
|
1.
Yuji Ktisunai. impact properties of ultra-fine grained tungsten alloys dispersed with TiC.
Journal of Nuclear Materials,1999,271(272):423-428
|
CSCD被引
1
次
|
|
|
|
2.
赵慕岳. 我国钨基高密度合金的发展现状与展望.
中国钨业,1999,14(5/6):38-42
|
CSCD被引
23
次
|
|
|
|
3.
Lonnberg B. Characterization of milled Si3N4.
Journal of Material Science,1994,29:3224-3230
|
CSCD被引
6
次
|
|
|
|
4.
Hall W H. X-ray line broadening in metals.
Proceeding of the Physical Society,1949,62:741-743
|
CSCD被引
5
次
|
|
|
|
5.
Gaffet E. Formation of nanostructural materials induced by mechanical processing.
Material Transactions,1995,36(2):198-209
|
CSCD被引
4
次
|
|
|
|
6.
Suryanarayana C. Mechanical alloying and milling.
Progress in Materials Science,2001,46:181-184
|
CSCD被引
321
次
|
|
|
|
7.
Zhang Zhongwu. Formation of crystalline and amorphous solid solutions of W-Ni-Fe powder during mechanical alloying.
Journal of Alloy and Compound,2004,370:187-188
|
CSCD被引
1
次
|
|
|
|
8.
German R M. Advances in powder metallurgy.
Powder Metallurgy,1991,4:183-191
|
CSCD被引
1
次
|
|
|
|
9.
王玉金. 合金元素及第二相对钨的影响.
宇航材料工艺,1998(5):10-14
|
CSCD被引
1
次
|
|
|
|
10.
Lin Kuan Hong. Structure analysis of the constitutional phases in liquid phase sintered W-Mo-Ni-Fe heavy alloys.
International Journal of Refactry Metals and Hard Materials,2003,21:193-198
|
CSCD被引
5
次
|
|
|
|
11.
Fan Jing Lian. Sintering of W-Ni-Fe heavy alloy.
Mining and Metallurgy Engineering (in Chinese),1998,18(4):41-42
|
CSCD被引
1
次
|
|
|
|
12.
范景莲. W-Ni-Fe高密度合金的烧结.
矿冶工程,1998,18(4):40-43
|
CSCD被引
3
次
|
|
|
|
13.
宋桂明. TiC和ZrC颗粒增强W基复合材料.
固体火箭技术,1998,21(4):55-59
|
CSCD被引
1
次
|
|
|
|
14.
Fan Jing Lian. Sintering of nanocrystalline tungsten heavy alloy powders prepared by high energy ball milling.
J Cent South Univ Technol,1998,29(5):450-453
|
CSCD被引
1
次
|
|
|
|
|