Effects of RRA Treatments on Microstructures and Properties of a New High-strength Aluminum-Lithium Alloy-2A97
查看参考文献12篇
文摘
|
A new high strength 2A97 Al-Cu-Li-X alloy was subjected to triple-aging of retrogression and re-aging treatments (RRA). Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and tensile tests were used to investigate the effects of RRA treatment on the microstructures and properties. DSC test reveals the reversion temperature range of the strengthening δ' (Al3Li)phase. The results show that the microstructure consists of δ' (Al3Li) phase, T1 (Al2CuLi) phase and θ"/θ'(Al2Cu) phase for 2A97 alloy treated by a triple-aging ora retrogression and re-aging treatment in the following order: (1) at 165 ℃×30 min, (2) at 220 ℃ or 240 ℃×15 min, (3) at 165 ℃×24 h. The plastic deformation, incorporated into the treatment after secondary high temperature aging, promotes the T1 precipitation during final re-aging. The tensile properties of the alloy treated by the retrogression and re-aging treatment reach the peak level of alloy single-aged at 165 ℃ in T6 temper. |
来源
|
Chinese Journal of Aeronautics
,2007,20(2):187-192 【核心库】
|
DOI
|
10.1016/s1000-9361(07)60031-4
|
关键词
|
2A97
;
Al-Cu-Li-X alloy
;
RRA treatments
;
triple aging;microstructure
;
reversion
|
地址
|
1.
School of Materials & Metallurgy, Northeastern University, Shenyang, 110004
2.
Beijing Institute of Aeronautical Materials, Beijing, 100095
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1000-9361 |
学科
|
航空 |
基金
|
国家973计划
|
文献收藏号
|
CSCD:2911964
|
参考文献 共
12
共1页
|
1.
Balmuth E S. Alloy design for overcoming the limitations of Al-Li alloy plate.
The 4th international conference on:Aluminum alloys:their physical and mechanical properties,1994:282-289
|
CSCD被引
1
次
|
|
|
|
2.
Komisarov V. Fatigue crack growth behavior of aluminum alloy 2020(Al-Cu-Li-Mn-Cd).
Materials Science and Engineering A,1996,221:113-122
|
CSCD被引
2
次
|
|
|
|
3.
Graham R H. Al-Li development.Proc 6th int Al-Li Conf.Eds.by Peters M,Winler P J.
Proc 6th int Al-Li Conf,1991:15-24
|
CSCD被引
1
次
|
|
|
|
4.
Cina B.
U S Patent No.3 856 584,1974
|
CSCD被引
1
次
|
|
|
|
5.
Robinson J S. Influence of retrogression and reaging on fracture toughness of 7010 aluminum alloy.
Materials Science and Technology,2003,19:1697-1704
|
CSCD被引
5
次
|
|
|
|
6.
Komisarov V. Effect of retrogression and reaging on the precipitates in an 8090 Al-Li alloy.
Materials Science and Engineering,1998,242:39-49
|
CSCD被引
3
次
|
|
|
|
7.
Ghosh K S. Characterization of retrogression and reaging behavior of 8090 Al-Cu-Li-Mg-Zr alloy.
Metallurgical and Materials Transctions A,2004,35:3681-3691
|
CSCD被引
7
次
|
|
|
|
8.
Ghosh K S. Studies of retrogression and reaging behavior in a 1441 Al-Li-Cu-Mg-Zr alloy.
Metallurgical and Materials Transactions A,2005,34:3477-3487
|
CSCD被引
7
次
|
|
|
|
9.
Lynch S P. Fracture of 8090 Al-Li plate I.Short transverse fracture toughness.
Materials Science and Engineering A,1991,136:25-43
|
CSCD被引
9
次
|
|
|
|
10.
Blenship J C P. Mechanical behavior of double-aged AA8090.
Metallurgical Transactions A,1993,24:833-841
|
CSCD被引
1
次
|
|
|
|
11.
Ghosh K S. Studies of microstructural changes upon retrogression and reaging(RRA)treatment to 8090Al-Li-Cu-Mg-Zr alloy.
Materials Science and Technology,2004,20:825-834
|
CSCD被引
9
次
|
|
|
|
12.
Pitcher P D. A study of reversion behavior in 8090 alloys using small angle neutron scattering and transmission electron microscopy.
Scripta Metallurgica,1992,26:511-516
|
CSCD被引
5
次
|
|
|
|
|