锑的表生地球化学行为与环境危害效应
SUPERGENE GEOCHEMICAL BEHAVIOR AND ENVIRONMENTAL RISK OF ANTIMONY
查看参考文献57篇
文摘
|
锑(Sb)是一种典型的有毒有害重金属元素.由于自然过程和人为活动的影响,锑及其化合物广泛分布于大气、土壤、水体等表生环境中,锑的环境污染日益严重.Sb不是植物必需元素,但能够被植物体及农作物吸收.Sb对人体和动物体产生慢性毒性及潜在致癌性.本文主要通过分析Sb的主要矿物、锑及其化合物在表生环境中的分布与迁移特性,来阐述人体可能的锑暴露途径及由此产生的环境危害效应. |
其他语种文摘
|
Antimony is a typical heavy element with high toxicity. Antimony and its compounds occur widely in the supergene environment (atmosphere, soil, water) induced by natural processes and human activities, and lead to increasing contamination of antimony. Antimony is not a necessary element for plants, but it can be uptaken by plants and crops. Antimony is chronically toxic and carcinogenic to human beings and animals. This paper briefly reviews the group of antimony minerals, the distribution and migration of antimony in supergene environment, and also documents the exposure way to antimony and the environmental risk caused by antimony. |
来源
|
地球与环境
,2007,35(2):176-182 【核心库】
|
关键词
|
锑
;
毒性
;
分布
;
迁移
;
环境危害
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1672-9250 |
学科
|
环境科学基础理论 |
基金
|
中国科学院西部之光人才培养计划
|
文献收藏号
|
CSCD:2845982
|
参考文献 共
57
共3页
|
1.
何孟常. 环境中锑的分布、存在形态及毒性和生物有效性.
化学进展,2004,16(1):131-135
|
CSCD被引
93
次
|
|
|
|
2.
De-Boorder H. Tectonic control of early to middle Paleozoic volcanism and related mercury and antimony mineralization in southern central Iberia.
Economic Geology,1994,89:656-661
|
CSCD被引
1
次
|
|
|
|
3.
曾令交.
湘中锡矿山式锑矿形成的地球化学机理,1998
|
CSCD被引
1
次
|
|
|
|
4.
彭建堂. 锑的大规模成矿与超常富集机制.
锑的大规模成矿与超常富集机制,2000
|
CSCD被引
3
次
|
|
|
|
5.
Normand C. The Quebec antimony deposit:an example of gudmundite-native antimony mineralization in the ophiolitic melange of the southeastern Quebec Appalachians.
Economic Geology,1996,91:149-163
|
CSCD被引
1
次
|
|
|
|
6.
Dill H G. The composite gold-antimony vein deposit at Kharma(Bolivia).
Economic Geology,1995,90:51-66
|
CSCD被引
3
次
|
|
|
|
7.
罗先熔. 锑矿地电化学异常特征、成晕机制及找矿预测.
地质与勘探,2002,38(2):59-62
|
CSCD被引
13
次
|
|
|
|
8.
金中国. 贵州省独山半坡锑矿地球化学特征及深部找矿预测.
地质与勘探,2004,40(6):24-27
|
CSCD被引
8
次
|
|
|
|
9.
Taylor S R. The geochemical evolution of the continental crust.
Reviews of Geophysics,1995,33(2):241-265
|
CSCD被引
622
次
|
|
|
|
10.
赵伦山.
地球化学,1998:39
|
CSCD被引
1
次
|
|
|
|
11.
Wu J D. Antimony vein deposits in China.
Ore Geology Review,1993,8:213-232
|
CSCD被引
14
次
|
|
|
|
12.
Suess H E. Abundances of the elements.
Reviews of Modern Physics,1956,28:53-74
|
CSCD被引
6
次
|
|
|
|
13.
Ure A M. The total trace element content of some Scottish soils by spark source mass spectrometry.
Geoderma,1979,22:1-23
|
CSCD被引
2
次
|
|
|
|
14.
Naidenov M. Nondestructive neutron activation analysis of Bulgarian soils.
Soil Science,1977,124:152-160
|
CSCD被引
1
次
|
|
|
|
15.
Clemente G F. Instrumental method for the determination of trace elements in water samples by neutron activation analysis.
Journal of Radioanalytical and Nuclear Chemistry,1974,20:707-714
|
CSCD被引
1
次
|
|
|
|
16.
Kharkar D P. Stream supply of dissolved silver molybdenum antimony selenium chromium cobalt rubidium and cesium to the oceans.
Geochimica et Cosmochimica Acta,1968,32:285-298
|
CSCD被引
3
次
|
|
|
|
17.
Tanaka S. Determination of antimony(Ⅲ) antimony(Ⅴ) selenium(Ⅳ)and selenium(Ⅵ)in natural waters by hydride generation atomic absorption spectrophotometry combined with a cold trap.
Bunseki Kagaku,1986,35:116-121
|
CSCD被引
2
次
|
|
|
|
18.
Gladney E S. Determination of arsenic tungsten and antimony in natural waters by neutron activation and inorganic ion exchange.
Analytical Chemistry,1976,48:2220-2222
|
CSCD被引
1
次
|
|
|
|
19.
Routh J. Trace-element Geochemical of Onion Creek near Van Stone lead-zinc mine(Washington USA)-chemical analysis and geochemical modeling.
Chemical Geology,1996,133:211-224
|
CSCD被引
3
次
|
|
|
|
20.
Nakamaru Y. Antimony mobility in Japanese agricultural soils and the factors affecting antimony sorption behavior.
Environmental Pollution,2006,141:321-326
|
CSCD被引
7
次
|
|
|
|
|