Richtmyer-Meshkov不稳定性流体混合区发展的实验研究
EVOLUTION OF THE FLUID MIXING ZONE IN RICHTMYER-MESHKOV INSTABILITY AT A GAS/LIQUID INTERFACE
查看参考文献16篇
文摘
|
使用矩形激波管,在马赫数分别为M=1.5和1.7的条件下实验研究了气/液界面上(即Atwood数A接近1时)由Richtmyer-Meshkov不稳定性引起的流体混合现象.得到了气/液界面上Richtmyer-Meshkov不稳定性后期流体混合区域宽度随时间的发展呈现出线性关系的结果,即h∝t.比较了不同马赫数和初始扰动下的发展情况,发现当马赫数增加时,同一时间混合区域宽度随之增加,混合区域宽度增长变快;而相比于波长差别不大的弱多模态初始扰动(无人为干扰界面),当界面初始扰动获得随机外界干扰时,界面混合区域具有较大的宽度以及增长速度.并且增加激波马赫数和初始扰动多模态性,流体混合程度更为剧烈 |
其他语种文摘
|
This paper presents an experimental study on fluid mixing induced by Richtmyer-Meshkov (RM) instability at an interface between water and air using a rectangular shock tube. The length of mixing zone is found to obey a linear law h∝ t when the Atwood number approaches to 1 under different Mach numbers and initial perturbations. However, the length of mixing zone increases when Mach number increases from 1.45 to 1.7, also increases when initial perturbations are random., and the mixing goes more tempestuously. |
来源
|
力学学报
,2007,39(3):417-421 【核心库】
|
关键词
|
Richtmyer-Meshkov不稳定性
;
混合区域宽度
;
初始扰动
;
激波管
|
地址
|
1.
浙江理工大学机械与自动控制学院, 杭州, 310018
2.
中国科学院力学研究所, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金
;
中国科学院“百人计划”项目
;
中国科学院力学研究所高温气体动力学重点实验室项目
|
文献收藏号
|
CSCD:2812166
|
参考文献 共
16
共1页
|
1.
Richtmyer RD. Taylor instability in shock acceleration of compressible fluids.
Commun Pure Appl Math,1960,13:297-319
|
CSCD被引
151
次
|
|
|
|
2.
Meshkov EE. Instability of the interface of two gases accelerated by a shock wave.
Fluid Dynamics,1969,4:101-104
|
CSCD被引
109
次
|
|
|
|
3.
王继海.
二维非定常流和激波,1994:348-478
|
CSCD被引
8
次
|
|
|
|
4.
Sadot O. Study of nonlinear evolution of single-model and two-bubble interaction under richtmyer-meshkov instability.
Physical Review Letters,1998,80(8):1654-1657
|
CSCD被引
14
次
|
|
|
|
5.
Brouillette M. Growth induced by multiple shock waves normally incident on plan gaseous interface.
Physica D,1989,37:248-263
|
CSCD被引
6
次
|
|
|
|
6.
Houas L. Experimental investigation of Richtmyer-Meshkov instability in shock tube.
Physics of Fluids,1996,8:614-627
|
CSCD被引
6
次
|
|
|
|
7.
Poggi E. Velocity measurements in turbulent gaseous mixtures induced by Richtmyer-Meshkov instability.
Physics of Fluids,1998,10:2698-2700
|
CSCD被引
2
次
|
|
|
|
8.
Brouillette M. The Richtmyer-Meshkov instability.
Annual Review of Fluid Mechanics,2002,34:445-468
|
CSCD被引
54
次
|
|
|
|
9.
施红辉. 瞬态加速液柱的流体力学问题研究.
爆炸与冲击,2003,23(5):391-397
|
CSCD被引
10
次
|
|
|
|
10.
White DR. Influence of diaphragm opening time on shocktube flows.
J Fluid Mech,1958,4:585-599
|
CSCD被引
1
次
|
|
|
|
11.
Taylor GI. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes.
I Proc R Soc Lond A,1950,201:192-196
|
CSCD被引
74
次
|
|
|
|
12.
Youngs DL. Numerical simulation of turbulent mixing by Rayleigh-Taylor instability.
Physica D,1984,12:45-58
|
CSCD被引
1
次
|
|
|
|
13.
Mikaelian KO. Turbulent mixing generated by Rayleigh-Taylor and Richtmyer-Meshkov instability.
Physica D,1989,36:343-357
|
CSCD被引
7
次
|
|
|
|
14.
Ramshaw JD. Simple model for linear and nonlinear mixing at unstable fluid interfaces with variable acceleration.
Physical Review E,1998,58:5834-5840
|
CSCD被引
2
次
|
|
|
|
15.
Alon U. Scale invariant mixing rates of hydrodynamically unstable interface.
Physical Review Letters,1994,72:2867-2870
|
CSCD被引
6
次
|
|
|
|
16.
Alon U. Power law and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios.
Physical Review Letters,1995,74(4):534-537
|
CSCD被引
22
次
|
|
|
|
|