微纳米晶金属的应变率敏感性及应变硬化行为分析
ANALYSIS OF STRAIN RATE SENSITIVITY AND STRAIN HARDEING BEHAVIOR IN ULTRAFINE-GRAINED AND NANOCRYSTALLINE METALS
查看参考文献20篇
文摘
|
基于亚微米、纳米晶粒组织塑性变形过程中多种变形机制(位错机制、扩散机制及晶界滑动机制)共存,建立了理论模型,用于定量研究亚微米、纳米晶粒组织的塑性变形行为.以铜为模型材料,计算分析了晶粒尺度、应变率以及温度对亚微米、纳米晶粒组织塑性变形行为的影响.结果表明:相比粗晶铜,亚微米晶铜表现出明显的应变率敏感性,并且应变率敏感系数随晶粒尺度及变形速率的减小而增大;同时,增大变形速率或降低变形温度都能提高材料的应变硬化能力,延缓颈缩发生,进而提高材料的延性.计算分析结果与实验报道吻合. |
其他语种文摘
|
A physically based model is proposed to describe the plastic deformation of ultrafine grained and nanocrystalline metals. In the framework of the model, three mechanisms of plastic deformation, namely dislocation glide mechanism, diffusion mechanism and grain boundary sliding mechanism were considered to account for the plastic deformation behavior. Based on the model, we used copper as a "prototype" material to investigate the effects of grain size, strain rate and temperature on the plastic deformation behavior. The calculated results show that the strain rate sensitivity increases with decreasing grain size or strain rate, while the flow stress increases with increasing strain rate or decreasing temperature. In addition, increasing strain rate can improve the ductility of the ultrafine grained Cu. The calculation results are in good agreement with experiments in literature. |
来源
|
固体力学学报
,2007,28(1):43-48 【核心库】
|
关键词
|
纳米晶
;
塑性变形
;
应变率敏感性
;
应变硬化
;
铜
|
地址
|
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-7805 |
学科
|
力学 |
基金
|
国家自然科学基金
;
国家973计划
|
文献收藏号
|
CSCD:2808898
|
参考文献 共
20
共1页
|
1.
Lu L. An abnormal strain rate effect on tensile behavior in nanocrystalline copper.
Scripta Mater,2001,45:1163-1169
|
CSCD被引
16
次
|
|
|
|
2.
Dalla Torre F. Nanocrystalline electrodeposited Ni:microstructure and tensile properties.
Acta Mater,2002,50:3957-3970
|
CSCD被引
40
次
|
|
|
|
3.
Schwaiger R. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel.
Acta Mater,2003,51(17):5159-5172
|
CSCD被引
32
次
|
|
|
|
4.
Wang Y M. Temperature and strain rate effects on the strength and ductility of nanostructured copper.
Appl Phys Lett,2003,83:3165-3167
|
CSCD被引
8
次
|
|
|
|
5.
Dalla Torre F H. Strain rate sensitivity and apparent activation volume measurements on equal channel angular extruded Cu processed by one to twelve passes.
Scripta Mater,2004,51:367-371
|
CSCD被引
4
次
|
|
|
|
6.
Wang Y M. Strain hardening strain rate sensitivity and ductility of nanostructured metals.
Acta Mater,2004,52:1699-1709
|
CSCD被引
64
次
|
|
|
|
7.
Kim H S. Plastic deformation behaviour of fine-grained materials.
Acta mater,2000,48:493-504
|
CSCD被引
14
次
|
|
|
|
8.
Estrin Y. in Unified constitutive Laws of Plastic Deformation.
Unified constitutive Laws of Plastic Deformation,1996:69-106
|
CSCD被引
8
次
|
|
|
|
9.
Wei Q. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume:fcc versus bcc metals.
Mater Sci Eng A,2004,381:71-79
|
CSCD被引
37
次
|
|
|
|
10.
Estrin Y. Evolution of dislocation densities and the critical conditions for the portevin-Le chatelier effect.
Acta metal Mater,1990,38(5):697-708
|
CSCD被引
1
次
|
|
|
|
11.
Kobrinsky M J. Activation volume for inelastic deformation in polycrystalline Ag thin films.
Acta mater,2000,48:625-633
|
CSCD被引
4
次
|
|
|
|
12.
Estrin Y. Tóth L S Molinari A BréchetA Y.
Acta mater,1998,46:5509-5522
|
CSCD被引
25
次
|
|
|
|
13.
Masumura R A. Yield stress of fine grained materials.
Acta mater,1998,46:4527-4534
|
CSCD被引
23
次
|
|
|
|
14.
Fedorov A A. Triple junction diffusion and plastic flow in fine-grained materials.
Scripta Materialia,2002,47:51-55
|
CSCD被引
5
次
|
|
|
|
15.
Watanabe H. Deformation mechanism of fine-gained superplasticity in metallic materials expected from the phenomenological constitutive equation.
Materials Transactions,2004,45(8):2497-2502
|
CSCD被引
6
次
|
|
|
|
16.
Herring C. Diffusional viscosity of a polycrystalline solid.
J Appl Phys,1950,21(5):437-445
|
CSCD被引
20
次
|
|
|
|
17.
Coble R L. A model for boundary diffussion controlled creep in polycrystalline materials.
J Appl Phys,1963,34:1679-1682
|
CSCD被引
44
次
|
|
|
|
18.
Lapovok R. Gradient plasticity constitutive model reflecting the ultrafine micro-structure scale:the case of severely deformed copper.
J Mech Phys Solids,2005,53:729-747
|
CSCD被引
5
次
|
|
|
|
19.
Sun P L. Influence of boundary characters on the tensile behavior of submicro-Aluminum.
Scripta mater,2005,52:265-269
|
CSCD被引
4
次
|
|
|
|
20.
Hart E W. Theory of the tensile test.
Acta Metall,1967,15:351-355
|
CSCD被引
34
次
|
|
|
|
|