不同形状微管道中的气体流动
GAS FLOWS THROUGH MICRO-PIPES WITH DIFFERENT CROSS-SECTION SHAPES
查看参考文献24篇
文摘
|
不同形状微尺度管道(圆形、六边形、半圆形、不同宽高比的矩形)中的气体流动特性是微机电系统设计最为关心的问题之一.文中利用信息保存(IP)方法和直接模拟Monte Carlo(DSMC)方法进行研究,给出两种方法的计算结果相互符合,并与其它研究者的BGK模型方程计算结果进行了比较.对于微尺度管道中关心的低Mach数流动,IP方法的统计收敛效率明显优于DSMC方法,通过拟合IP和DSMC结果,给出了圆形、六边形、半圆形、不同宽高比的矩形截面情况下无量纲质量流率与等效Knudsen数的关系. |
其他语种文摘
|
The information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method are employed to investigate gas flows through micro-pipes with the circular, semi-circular, hexagonal or rectan- gular cross sections, respectively, as an important issue in the design and optimization of MEMS devices. The IP and DSMC results agree well with each other, and are compared with the numerical solutions of the BGK model equation given by other researchers. For low Mach number cases in micro-pipe flows, the IP method demonstrates the statistically convergent efficiency superior to DSMC. The investigation shows that the cross-section shapes of micro-pipes considerately affect their mass flow rates. A relation between the mass flow rate and the equivalent Knudsen number for circular, semi-circular, hexagonal and rectangular cross sections is suggested through fitting the IP and DSMC results. |
来源
|
力学学报
,2007,39(2):145-152 【核心库】
|
关键词
|
微管道
;
稀薄气体效应
;
IP方法
;
DSMC方法
|
地址
|
中国科学院力学研究所, 高温气体动力学重点实验室, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
航空 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:2760112
|
参考文献 共
24
共2页
|
1.
Bird GA.
Molecular Gas Dynamics and the Direct Simulation of Gas Flows,1994
|
CSCD被引
213
次
|
|
|
|
2.
沈青.
稀薄气体动力学,2003
|
CSCD被引
91
次
|
|
|
|
3.
Pong KC. Non-linear pressure distribution in uniform microchannel.
ASME-FED,1994,197:51-56
|
CSCD被引
5
次
|
|
|
|
4.
Shih JC. Monoatomic and polyatomic gas flow through uniform microchannels.
ASMEDSC,1996,59:197-203
|
CSCD被引
1
次
|
|
|
|
5.
Shen C. A strict kinetic solution of the finite length microchannel flow problem.
3rd International Conference on Microchannels and Minichannels,2005
|
CSCD被引
1
次
|
|
|
|
6.
Ohwada T. Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for Hard-sphere molecules.
Phys Fluids A,1989,1:2042-2049
|
CSCD被引
12
次
|
|
|
|
7.
Hasegawa M. Poiseuille and thermal transpiration flows of a rarefied gas for various pipes.
J Vac Soc Japan,1988,31:416-419
|
CSCD被引
1
次
|
|
|
|
8.
Aoki K. Dynamics of rarefied gas flows:asymptotic and numerical analyses of the Boltzmann equation.
AIAA J,2001-0874,2001
|
CSCD被引
1
次
|
|
|
|
9.
Sharipov F. Rarefied gas flow through a long rectangular channel.
J Vac Sci Technol A,1999,17:3062-3066
|
CSCD被引
3
次
|
|
|
|
10.
Sharipov F. Data on internal rarefied gas flows.
J Phys Chem Ref Data,1998,27:657-706
|
CSCD被引
8
次
|
|
|
|
11.
Oran ES. Direct simulation Monte Carlo:recent advances and applications.
Annu Rev Fluid Mech,1998,30:403-441
|
CSCD被引
19
次
|
|
|
|
12.
Fan J. Statistical simulation of low-speed unidirectional flows in transition regime.
Rarefied Gas Dynamics.Cepadues Editions 2,1999:245-252
|
CSCD被引
1
次
|
|
|
|
13.
Fan J. Statistical simulation of low-speed rarefied gas flows.
J Comp Phys,2001,167:399-412
|
CSCD被引
1
次
|
|
|
|
14.
Fan J. Computation of rarefied gas flows around a NACA 0012 airfoil.
AIAA J,2001,39:618-625
|
CSCD被引
7
次
|
|
|
|
15.
Xie C. Statistical simulation of rarefied gas flows in micro-channels.
Rarefied Gas Dynamics,2003:800-807
|
CSCD被引
2
次
|
|
|
|
16.
Shen C. Statistical simulation of rarefied gas flows in micro-channels.
J Comput Phys,2003,189:512-526
|
CSCD被引
8
次
|
|
|
|
17.
Shen C. Examination of LBM in simulation of microchannel flow in transitional regime.
Microscale Thermophys Eng,2004,8:423-432
|
CSCD被引
14
次
|
|
|
|
18.
Shen C. Use of the degenerated Reynolds equation in solving the microchannel gas flow problem.
Phys Fluids,2005,17:046101
|
CSCD被引
3
次
|
|
|
|
19.
Sun QH. A direct simulation for subsonic microscale gas flows.
J Comp Phys,2002,179:400-425
|
CSCD被引
8
次
|
|
|
|
20.
Sun QH. A hybrid continuum/particle approach for modeling rarefied gas flows.
J Comp Phys,2004,194:256-277
|
CSCD被引
12
次
|
|
|
|
|