帮助 关于我们

返回检索结果

Navier-Stokes方程二阶速度滑移边界条件的检验
ASSESSMENT OF SECOND-ORDER VELOCITY-SLIP BOUNDARY CONDITIONS OF THE NAVIER-STOKES EQUATIONS

查看参考文献18篇

谢翀   樊菁  
文摘 对微尺度气体流动,Navier-Stokes方程和一阶速度滑移边界条件的结果与实验数据相比,在滑移区相互符合,在过渡领域则显著偏离,为改善Navier-Stokes方程在过渡领域的表现,有些研究者尝试引入二阶速度滑移边界条件,如Cercignani模型,Deissler模型和Beskok-Karniadakis模型.以微槽道气体流动为例,将Navier-Stokes方程在不同的二阶速度滑移模型下的结果与动理论的直接模拟Monte Carlo(DSMC)方法和信息保存(IP)方法以及实验数据进行比较.在所考察的3种具有代表性的二阶速度滑移模型中,Cercignani模型表现最好,其所给出的质量流率在Knudsen数为0.4时仍与DSMC和IP结果相符;然而,细致比较表明,Cercignani模型给出的物面滑移速度及其附近的速度分布在滑流区和过渡领域的分界处(Kn=0.1)已明显偏离DSMC和IP的结果.
其他语种文摘 For micro-scale gas flows, the Navier-Stokes equations with first-order velocity slip boundary conditions give results that agree with experimental data in the slip regime, but differ obviously in the transitional regime. Second-order velocity-slip boundary conditions were introduced to improve the performance of the Navier-Stokes equations in the transitional regime. This paper considers two-dimensional gas flows through microchannels for which the Navier-Stokes solutions based on different second-order velocity-shp boundary conditions suggested by Cercignani, Deissler, Beskok and Karniadakis, respectively, are compared with the kinetic results given by the information preservation (IP) method, the direct simulation Monte Carlo (DSMC) method, and experimental data. It is shown that the Cerciganani model performs best among the three second-order models we examined, and its mass flow rate agrees with the DSMC and IP results even at the Knudsen number of 0.4. However, a careful examination of the shp velocities and velocity distributions at and around the channel surfaces given by the Cercignani model demonstrates that they considerately deviate from those given by the DSMC and IP methods at the Knudsen number of 0.1, that is generally regarded as a critical value to divide the shp and transitional regimes.
来源 力学学报 ,2007,39(1):1-6 【核心库】
关键词 二阶速度滑移模型 ; 微槽道流动 ; DSMC方法 ; IP方法
地址

中国科学院力学研究所, 高温气体动力学重点实验室, 北京, 100080

语种 中文
文献类型 研究性论文
ISSN 0459-1879
学科 航空
文献收藏号 CSCD:2733296

参考文献 共 18 共1页

1.  Zohar Y. Subsonic gas flow in a straight and uniform microchannel. J Fluid Mech,2002,472:125-151 CSCD被引 7    
2.  Maurer J. Second-order slip laws in microchannels for helium and nitrogen. Physics of Fluids,2003,15:2613-2621 CSCD被引 17    
3.  Arkilic EB. Mass flow and tangential momentum accommodation in silicon micromachined channels. J Fluid Mech,2001,437:29-43 CSCD被引 9    
4.  Fan J. Statistical simulation of low-speed rarefied gas flows. J Computational Physics,2001,67:393-412 CSCD被引 42    
5.  Cercignani C. Higher order slip according to the linearized Boltzmann equation. Institute of Engineering Research Report AS-64-19,1964 CSCD被引 1    
6.  Cercignani C. The Boltzmann Equation and Its Applications,1988 CSCD被引 30    
7.  Hadjiconstantinou NG. Comment on Cercignani's secondorder slip coefficient. Physics Fluids,2003,15:2352-2354 CSCD被引 11    
8.  Deissler RG. An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases. Int J Heat Mass Transfer,1965,7:681-694 CSCD被引 1    
9.  Beskok A. Rarefaction and compressibility effects in gas microflows. J Fluids Engin,1996,11:448-456 CSCD被引 31    
10.  Karniadakis G. Micro Flows,2002 CSCD被引 2    
11.  Hadjiconstantinou NG. Validation of a second-order slip model for dilute gas flows. Microscale Thermophysical Engineering,2005,9:137-153 CSCD被引 1    
12.  Hadjiconstantinou NG. A linearized kinetic formulation including a second-order slip model for an impulsive start problem at arbitrary Knudsen numbers. J Fluid Mech,2005,533:47-56 CSCD被引 1    
13.  Bird GA. Molecular Gas Dynamics and the Direct Simulation of Gas Flow,1994 CSCD被引 34    
14.  沈青. 稀薄气体动力学,2003 CSCD被引 91    
15.  Xie C. Statistical simulation of rarefied gas flows in micro-channels. Rarefied Gas Dynamics,2003,23 CSCD被引 1    
16.  Shen C. Statistical simulation of rarefied gas flows in micro-channels. J Computational Physics,2003,189:512-526 CSCD被引 8    
17.  Sun QH. Drag on a flat-plate in low-Reynoldsnumber gas flows. AIAA J,2004,42:1066-1072 CSCD被引 5    
18.  Sun QH. Flat-plate aerodynamics at very low Reynolds number. J Fluid Mech,2004,502:199-206 CSCD被引 4    
引证文献 8

1 周剑锋 微管道中压力驱动液体流动的边界速度滑移 科学通报,2010,55(30):2974-2981
CSCD被引 0 次

2 宁方伟 微小尺度下平板间气体流动机理及压力特性分析 中国机械工程,2016,27(14):1862-1865
CSCD被引 4

显示所有8篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号