Navier-Stokes方程二阶速度滑移边界条件的检验
ASSESSMENT OF SECOND-ORDER VELOCITY-SLIP BOUNDARY CONDITIONS OF THE NAVIER-STOKES EQUATIONS
查看参考文献18篇
文摘
|
对微尺度气体流动,Navier-Stokes方程和一阶速度滑移边界条件的结果与实验数据相比,在滑移区相互符合,在过渡领域则显著偏离,为改善Navier-Stokes方程在过渡领域的表现,有些研究者尝试引入二阶速度滑移边界条件,如Cercignani模型,Deissler模型和Beskok-Karniadakis模型.以微槽道气体流动为例,将Navier-Stokes方程在不同的二阶速度滑移模型下的结果与动理论的直接模拟Monte Carlo(DSMC)方法和信息保存(IP)方法以及实验数据进行比较.在所考察的3种具有代表性的二阶速度滑移模型中,Cercignani模型表现最好,其所给出的质量流率在Knudsen数为0.4时仍与DSMC和IP结果相符;然而,细致比较表明,Cercignani模型给出的物面滑移速度及其附近的速度分布在滑流区和过渡领域的分界处(Kn=0.1)已明显偏离DSMC和IP的结果. |
其他语种文摘
|
For micro-scale gas flows, the Navier-Stokes equations with first-order velocity slip boundary conditions give results that agree with experimental data in the slip regime, but differ obviously in the transitional regime. Second-order velocity-slip boundary conditions were introduced to improve the performance of the Navier-Stokes equations in the transitional regime. This paper considers two-dimensional gas flows through microchannels for which the Navier-Stokes solutions based on different second-order velocity-shp boundary conditions suggested by Cercignani, Deissler, Beskok and Karniadakis, respectively, are compared with the kinetic results given by the information preservation (IP) method, the direct simulation Monte Carlo (DSMC) method, and experimental data. It is shown that the Cerciganani model performs best among the three second-order models we examined, and its mass flow rate agrees with the DSMC and IP results even at the Knudsen number of 0.4. However, a careful examination of the shp velocities and velocity distributions at and around the channel surfaces given by the Cercignani model demonstrates that they considerately deviate from those given by the DSMC and IP methods at the Knudsen number of 0.1, that is generally regarded as a critical value to divide the shp and transitional regimes. |
来源
|
力学学报
,2007,39(1):1-6 【核心库】
|
关键词
|
二阶速度滑移模型
;
微槽道流动
;
DSMC方法
;
IP方法
|
地址
|
中国科学院力学研究所, 高温气体动力学重点实验室, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
航空 |
文献收藏号
|
CSCD:2733296
|
参考文献 共
18
共1页
|
1.
Zohar Y. Subsonic gas flow in a straight and uniform microchannel.
J Fluid Mech,2002,472:125-151
|
CSCD被引
7
次
|
|
|
|
2.
Maurer J. Second-order slip laws in microchannels for helium and nitrogen.
Physics of Fluids,2003,15:2613-2621
|
CSCD被引
17
次
|
|
|
|
3.
Arkilic EB. Mass flow and tangential momentum accommodation in silicon micromachined channels.
J Fluid Mech,2001,437:29-43
|
CSCD被引
9
次
|
|
|
|
4.
Fan J. Statistical simulation of low-speed rarefied gas flows.
J Computational Physics,2001,67:393-412
|
CSCD被引
42
次
|
|
|
|
5.
Cercignani C. Higher order slip according to the linearized Boltzmann equation.
Institute of Engineering Research Report AS-64-19,1964
|
CSCD被引
1
次
|
|
|
|
6.
Cercignani C.
The Boltzmann Equation and Its Applications,1988
|
CSCD被引
30
次
|
|
|
|
7.
Hadjiconstantinou NG. Comment on Cercignani's secondorder slip coefficient.
Physics Fluids,2003,15:2352-2354
|
CSCD被引
11
次
|
|
|
|
8.
Deissler RG. An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases.
Int J Heat Mass Transfer,1965,7:681-694
|
CSCD被引
1
次
|
|
|
|
9.
Beskok A. Rarefaction and compressibility effects in gas microflows.
J Fluids Engin,1996,11:448-456
|
CSCD被引
31
次
|
|
|
|
10.
Karniadakis G.
Micro Flows,2002
|
CSCD被引
2
次
|
|
|
|
11.
Hadjiconstantinou NG. Validation of a second-order slip model for dilute gas flows.
Microscale Thermophysical Engineering,2005,9:137-153
|
CSCD被引
1
次
|
|
|
|
12.
Hadjiconstantinou NG. A linearized kinetic formulation including a second-order slip model for an impulsive start problem at arbitrary Knudsen numbers.
J Fluid Mech,2005,533:47-56
|
CSCD被引
1
次
|
|
|
|
13.
Bird GA.
Molecular Gas Dynamics and the Direct Simulation of Gas Flow,1994
|
CSCD被引
34
次
|
|
|
|
14.
沈青.
稀薄气体动力学,2003
|
CSCD被引
91
次
|
|
|
|
15.
Xie C. Statistical simulation of rarefied gas flows in micro-channels.
Rarefied Gas Dynamics,2003,23
|
CSCD被引
1
次
|
|
|
|
16.
Shen C. Statistical simulation of rarefied gas flows in micro-channels.
J Computational Physics,2003,189:512-526
|
CSCD被引
8
次
|
|
|
|
17.
Sun QH. Drag on a flat-plate in low-Reynoldsnumber gas flows.
AIAA J,2004,42:1066-1072
|
CSCD被引
5
次
|
|
|
|
18.
Sun QH. Flat-plate aerodynamics at very low Reynolds number.
J Fluid Mech,2004,502:199-206
|
CSCD被引
4
次
|
|
|
|
|