硫酸盐还原菌对X70钢土壤宏电池腐蚀的影响
EFFECTS OF SRB ON MACROCELL CORROSION OF X70 STEEL IN SOILS
查看参考文献10篇
文摘
|
利用极化曲线、电化学阻抗、扫描电镜和表面能谱等方法,研究了硫酸盐还原菌对X70钢在土壤中宏电池腐蚀的影响.结果表明,接菌或灭菌粘土和砂土组成的宏电池,砂土中试样为宏电池的阴极,粘土中试样为阳极;随实验时间的增加,接菌及灭菌粘土中自然埋藏X70钢腐蚀速率逐渐减小,而砂土中宏电池阳极的腐蚀速率一直相当高;接菌土壤宏电池的电流和电动势比灭菌的大,接菌及灭菌粘土中阳极的腐蚀速率分别是自然腐蚀速率的4.93和2.45倍;在宏电池阴阳极面积比15∶1情况下,接菌及灭菌粘土中宏电池阳极的腐蚀速率分别为宏电池阴阳极面积比1∶1时的5.01及2.33倍. |
其他语种文摘
|
The effects of SRB on macrocell corrosion of X70 steel in soils were studied by using polarization curve technique, electrochemical impedance speetroscopy (EIS), scanning electron microscopy (SEM) and EDXA. It was noted that the SRB obviously affected the macrocell corrosion behavior of X70 steel. When X70 steel formed a macrocell between inoculation SRB or bactericide clay and sand, X70 steel in clay was an anode,while that in sand was a cathode. Along with test going, the corrosion rate of X70 steel, which was buried by natural style, was slow, but the anode of macro cell kept a rapid corrosion rate. The corrosion rate of X70 steel in clay was faster than that in natural condition. Current density and electromotive force of macro cell of X70 steel formed between inoculation SRB clay and sand was much larger than that between bactericide clay and sand. The corrosion rate of anode in inoculation SRB clay was 4.93 times of that in natural condition. The corrosion rate of anode in bactericide clay was 2.45 times of that in natural condition. When the area ratio of cathode to anode being 15:1, the corrosion ratio of anode in inoculation SRB clay and bactericide clay were respectively 5.01 and 2.33 times respectively of that in condition of the area ratio of cathode to anode being 1:1. |
来源
|
腐蚀科学与防护技术
,2007,19(2):98-102 【核心库】
|
关键词
|
硫酸盐还原菌
;
X70钢
;
宏电池
;
腐蚀
|
地址
|
1.
遵义师范学院,化学系, 金属腐蚀与防护国家重点实验室, 遵义, 563002
2.
中国科学院金属研究所, 金属腐蚀与防护国家重点实验室, 沈阳, 110016
3.
遵义师范学院,化学系, 遵义, 563002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1002-6495 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
贵州省教育厅自然科学基金重点项目
|
文献收藏号
|
CSCD:2723399
|
参考文献 共
10
共1页
|
1.
Norbert D. Greene corrosion of steel pipes.
Corrosion,1995,17(3):20
|
CSCD被引
1
次
|
|
|
|
2.
朱日彰.
腐蚀与防护基础,1987:151
|
CSCD被引
1
次
|
|
|
|
3.
孙成. LCA铝合金的土壤盐浓差宏电池腐蚀.
中国有色金属学报,2000,10(5):643
|
CSCD被引
1
次
|
|
|
|
4.
张淑泉. 同种金属在异种土壤中的腐蚀行为研究.
腐蚀与防护,1998,19(4):160
|
CSCD被引
2
次
|
|
|
|
5.
高立群. Q235钢在土壤中宏电池腐蚀行为的研究.
腐蚀与防护,2000,21(1):12
|
CSCD被引
1
次
|
|
|
|
6.
孙成. 土壤盐浓差宏电池对碳钢的腐蚀.
腐蚀科学与防护技术,2000,12(2):101
|
CSCD被引
5
次
|
|
|
|
7.
LiS Kim Y. Microbiologically influenced corrosion of carbon steel exposed to anaerobic soil.
Corrosion,2001,57(9):24
|
CSCD被引
1
次
|
|
|
|
8.
苗承武. 西气东输管道规划及防腐蚀措施.
全面腐蚀控制,2000,14(6):27
|
CSCD被引
5
次
|
|
|
|
9.
全国土壤腐蚀试验网站.
全国土壤腐蚀试验网站资料选编(第2集),1992:65
|
CSCD被引
1
次
|
|
|
|
10.
伍远辉. 湿度对X70管线钢在青海盐湖盐渍土壤中腐蚀行为的影响.
腐蚀科学与防护技术,2005,17(2):87
|
CSCD被引
12
次
|
|
|
|
|