Second Order Nonlinear Evolution Inclusions Ⅱ: Structure of the Solution Set
查看参考文献23篇
文摘
|
We contimle the work initiated in [1] (Second order nonlinear evolution inclusions I: Existence and relaxation results. Acta Mathematics Science, English Series, 21(5), 977-996 (2005)) and study the structural properties of the solution set of second order evolution inclusions which are defined in the analytic framework of the evolution triple. For the convex problem we show that the solution set is compact Rs, while for the nonconvex problem we show that it is path connected, Also we show that the solution set is closed only if the multivalued nonlinearity is convex valued. Finally we illustrate the results by considering a nonlinear hyperbolic problem with discontinuities. |
来源
|
Acta Mathematica Sinica. English Series
,2006,22(1):195-206 【核心库】
|
DOI
|
10.1007/s10114-004-0509-x
|
关键词
|
Evolution triple
;
Compact embedding
;
Second order evolution
;
Compact Rs
;
Pathconnected
;
Connected
;
Continuum
;
Hyperbolic problem
|
地址
|
National Technical University, Department of Mathematics, Zografou Campus, Greece
|
语种
|
英文 |
ISSN
|
1439-8516 |
学科
|
数学 |
文献收藏号
|
CSCD:2674153
|
参考文献 共
23
共2页
|
1.
Papageorgiou N S. Second Order Nonlinear Evolution Inclusions Ⅰ:Existence and Relaxation Results.
Acta Mathematica Sinica,2005,21(5):977-996
|
CSCD被引
4
次
|
|
|
|
2.
Ahmed N U. Optimal control of nonlinear second order evolution equations.
J Appl Math Stoch Anal,1993,6:123-136
|
CSCD被引
1
次
|
|
|
|
3.
Gasinski L. An existence theorem for wave-type hyperbolic hemivariational inequalities.
Math Nachr,2002,242:79-90
|
CSCD被引
2
次
|
|
|
|
4.
Kartsatos A. An L2-approach to second order nonlinear evolutions involving m-accrativeoperators in Banach spaces.
Diff Integral Eqns,2001,14:833-866
|
CSCD被引
1
次
|
|
|
|
5.
Migorski S. Existence variational and optimal control problems for nonlinear second order evolutioninclusions.
Dynam Syst and Appl,1995,4:513-528
|
CSCD被引
3
次
|
|
|
|
6.
De Blasi F S. On the solution sets for differential inclusions.
Bull Acad Polon Sci,1985,33:17-23
|
CSCD被引
1
次
|
|
|
|
7.
Gorniewicz L. On the solution sets of differential inclusions.
J Math Anal Appl,1986,113:235-244
|
CSCD被引
1
次
|
|
|
|
8.
Papageorgiou N S. On the solution set of differential inclusions in Banach space.
Appl Anal,1987,25:319-329
|
CSCD被引
1
次
|
|
|
|
9.
Plaskacz S. On the solution sets of differential inclusions.
Bolletino UMI,1992,6:387-394
|
CSCD被引
1
次
|
|
|
|
10.
Dragoni R.
Solution Sets of Differential Equations in Abstract Spaces,1996
|
CSCD被引
1
次
|
|
|
|
11.
Conti G. On the topological structure of the solution set for a semilinearfunctional-differential inclusion in a Banach space in Topology in Nonlinear Analysis Banach CenterPublications Vol 35.
Polish Academy of Sciences,1996:1-11
|
CSCD被引
1
次
|
|
|
|
12.
De Blasi F S.
Nonlin Anal,1995,24:711-720
|
CSCD被引
1
次
|
|
|
|
13.
Hu S. On the properties of the solution set of semilinearevolution inclusions.
Nonlin Anal,1995,24:1683-1712
|
CSCD被引
1
次
|
|
|
|
14.
Papageorgiou N S. Properties of the solution set of nonlinear evolution inclusions.
Appl Math Optim,1997,36:1-20
|
CSCD被引
2
次
|
|
|
|
15.
Hyman D M. On decreasing sequences of compact absolute retracts.
Fund Math,1969,64:91-97
|
CSCD被引
1
次
|
|
|
|
16.
Hu S.
Applications Kluwer Dordrecht,2000
|
CSCD被引
1
次
|
|
|
|
17.
Hu S.
Theory Kluwer Dordrecht,1997
|
CSCD被引
1
次
|
|
|
|
18.
De Blasi F S. Hausdorff measurable multifunctions.
J Math Anal Appl,1998,228:1-15
|
CSCD被引
1
次
|
|
|
|
19.
Lasry J M. Acyclicite de l’ensemble des solutions des certains equations fonctionelles.
CRASParis t,1976,282:1283-1286
|
CSCD被引
1
次
|
|
|
|
20.
Brezis H.
Operateurs Maximaux Monotones,1973
|
CSCD被引
4
次
|
|
|
|
|