帮助 关于我们

返回检索结果

屈光参差性弱视患者皮层功能损害及其与视力损害关系的功能MRI研究
Bold-functional MRI study of the abnormal cortex and the relationship between the inpairment of vision and the decreased activation of the visual cortex in anisometropic amblyopia

查看参考文献9篇

王健 1   李传明 1   余琼武 1   汪辉 1   周杨 1   谢兵 1   邱明国 2   翁旭初 3  
文摘 目的 利用血氧水平依赖性功能MRI(BOLD-fMRI)技术,探讨屈光参差性弱视患者不同分区的大脑视觉皮层功能的影响,分析皮层激活改变与视力损害间的可能关系.方法 以1.5TMR成像系统采集10例屈光参差性弱视患者枕叶视皮层兴趣区BOLD-fMRI数据,比较屈光参差性弱视组弱视眼与对侧眼及弱视眼屈光矫正前、后皮层激活范围的不同,分析其改变特点及机制.测定弱视眼视力损害情况,分析其与皮层激活改变的可能关系.统计分析采用配对样本秩和检验方法.结果 弱视眼裸眼平均皮层激活范围为(3.7±0.4)*10~4体素,矫正后为(4.1±0.5)*10~4体素,差异有统计学意义(Z=-2.197,P=0.028).戴眼镜矫正视力后,弱视眼Brodmann 17区皮层激活范围为(0.44±0.07)*10~4体素,对侧眼为(0.47±0.07)*10~4体素,弱视眼Brodmann 18、19区皮层激活范围为(3.7±0.3)*10~4体素,对侧眼为(3.4±0.4)*10~4体素,差异均有统计学意义(Z值分别为-2.050、-2.524,P值分别为0.040、0.012).弱视者双眼皮层激活差异指数为0.05±0.04,双眼视力差异指数为0.58±0.22,二者无线性相关性(r=0.35,P=0.40).结论 屈光参差性弱视各级视觉皮层均发生了明显的激活范围改变,弱视眼矫正屈光不正后皮层激活范围明显增大,提示尽早矫正视力对改善弱视皮层损害有帮助,但这种皮层激活范围的改变与视力的损害情况间并不呈线性相关.
其他语种文摘 Objective To assess the activation changes on Brodmann areas 17, 18 and 19 in anisometropic amblyopia and compare the features of the cortex activations before and after refractive correction on amblyopic eyes. Methods Bold-fMRI technique on 1.5 T Simens Sonata MRI and the blocks designation mode was used. The visual stimulation task was a black and white checkerboard with frequencies of 1 cycle/degree and 8 Hz. The baseline stimulus is a white cross-line at the center of the screen with black background. No other light or influence was allowed in the scanning room. The distance between the eyes and screen was 0.6 m. The experimental group included 10 anisometropic amblyopes. TSE and EPI sequence were used for the anatomical and functional data acquisitions. For experimental group, the activation areas of the visual cortex on both eyes were consequently measured before and after refractive correction. All data were analyzed online with t-test and offline with AFNI software. The threshold value was set to 0.001. During data processing, motion correction and three-dimensional smooth were used in all data. The time-signal intensity curves and the functional images were obtained. After Talairach coordinated the function images of every one, the activation areas were measured in Brodmann areas 17, 18 and 19. The SPSS 12.0 software was used for statistic analysis. The difference of the cortical activations of amblyopic eyes before and after refractive correction was analyzed. The cortical activations of amblyopic eyes and the fellow eyes after refractive correction were compared. The visual acuity of the amblyopia eyes was measured. And the correlation between the lesion of cortical activation and visual acuity was analyzed. Results It was found that the cortex was activated obviously in the calcarine cortex around, occipital lobe, LGN and temporal lobe, The activation areas of amblyopic eyes was (3.7 ± 0.4) * 10~4 voxels, and (4.1 ± 0.5) * 10~4 voxels after corrected. The visual cortical activation increased greatly after efractive correction (Z = -2.197, P = 0.028). After refractive correction Brodmann areas 17 was (0.44 ± 0.07) * 10~4 voxels, Brodmann areas 18 and 19 was (3.7 ± 0.3) * 10~4 voxels. While for the fellow sound eyes the activation areas of Brodmann 17 was (0.47 ± 0.07) * 10~4 voxels, and the activation areas of Brodmann 18 and 19 was (3.4 ± 0.4) * 10~4 voxels. The amblyopia eyes were still less than that of the fellow eyes distinctly in all of Brodmann areas 17, 18 and 19(Z = -2.050,-2.524; P = 0.040, 0.012). In this experiment, all amblyopic eyes have changes on visual acuity and visual cortex activation. The interoculer difference of cortex activation was 0.05 ± 0.04, while the interoculer difference of visual acuity was 0.58 ± 0.22. There was no remarkable linear relationship between them. Conclusion There are remarkable changes of cortical activation in Brodmann area 17, 18 and 19 on anisometropic amblyopia. Refractive correction can increase amblyopic eye's cortex activation obviously. There is no linear correlation between the decreased cortical activation and visual acuity. This suggests that anisomelropic amblyope should be treated as early as possible in the crucial period.
来源 中华放射学杂志 ,2006,40(12):1246-1249 【核心库】
关键词 弱视 ; 大脑皮质 ; 磁共振成像
地址

1. 第三军医大学西南医院放射科, 重庆, 400038  

2. 第三军医大学解剖教研室  

3. 中国科学院心理所, 脑与认知科学国家重点实验室

语种 中文
文献类型 研究性论文
ISSN 1005-1201
学科 特种医学
文献收藏号 CSCD:2657628

参考文献 共 9 共1页

1.  刘家琦. 眼科全书. 眼科全书,下册,1996:2955 CSCD被引 1    
2.  张志强. 屈光不正型弱视的功能磁共振成像研究. 医学研究生学报,2004,17:439-442 CSCD被引 4    
3.  郝晶. 人脑注意网络神经基础的功能MRI研究. 中华放射学杂志,2005,39:619-623 CSCD被引 4    
4.  刘虎. 斜视性弱视皮层损害的功能性磁共振成像研究. 中华眼底病杂志,2004,20:19-22 CSCD被引 11    
5.  Goodyear B. BOLD fMRI response of early visual areas to perceived contrast in human amblyopia. J Neurophysiol,2000,84:1907-1913 CSCD被引 2    
6.  Lee K. Binocularity and spatial frequency dependence of calcarine activation in two types of amblyopia. Neurosci Res,2001,40:147-153 CSCD被引 2    
7.  Miki A. Decreased activation of the lateral geniculate nucleus in a patient with anisometropic amblyopia demonstrated by functional magnetic resonance imaging. Ophthalmologica,2003,217:365-369 CSCD被引 12    
8.  Algaze A. The effects of L-dopa on the functional magnetic resonance imaging response of patients with amblyopia:a pilot study. J AAPOS,2005,9:216-223 CSCD被引 3    
9.  Mendola JD. Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Hum Brain Mapp,2005,25:222-236 CSCD被引 14    
引证文献 3

1 杜寒剑 经MRI研究屈光不正性弱视患儿枕叶皮质厚度 中华放射学杂志,2008,42(1):47-49
CSCD被引 2

2 刘圣源 基于体素的形态测量学方法研究屈光参差性弱视患儿的相关区域脑结构 中华放射学杂志,2012,46(1):45-48
CSCD被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号