与铜、金矿化有关的富碱侵入岩矿物化学研究
MINERAL CHEMISTRY STUDIES OF Cu-AND Au-MINERALIZED ALKALINE INTRUSIONS
查看参考文献53篇
文摘
|
以哀牢山—金沙江富碱侵入岩带内与金矿化有关的姚安正长斑岩和与铜矿化有关的马厂箐花岗斑岩为研究对象,开展了系统的矿物化学研究。结果表明,姚安岩体形成的温压条件为(818±50)℃和0.9×10~8~1.3×10~8Pa,马厂箐岩体形成的温压条件为(729±50)℃和2.2×10~8~2.8×10~8Pa,两岩体的氧逸度均高于地幔石英-橄榄岩-磁铁矿出溶线,相对于马厂箐岩体而言,姚安岩体结晶时的氧逸度更高。两岩体矿化作用的差异与岩浆的分异程度有密切的关系。相对于铜矿化而言,氧逸度较高的岩浆有利于金矿化。 |
其他语种文摘
|
The Yao'an and Machangqing alkaline intrusions belong to the Jinshajiang-Red River alkaline intrusive suite, located in southwestern China. The Yao'an syenite porphyry is associated with Au mineralization and the Machangqing granite porphyry with Cu mineralization. Study of the mineral chemistry of dominant silicate minerals from evolved granitic rocks from these two intrusions provides insight into the overall petrogenesis of the Ailaoshan-Jinshajiang alkaline intrusive suite. The temperature and pressure derived from amphibole-plagioclase and perthite-plagioclase geothermometry, and Al in amphibole barometry suggest that the syenite porphyry in the Yao'an intrusion crystallized around 818±50℃ and 0.9-1.3kbar, whereas the granite porphyry in the Machangqing intrusion crystallized around 729±50℃, 2.2-2.8kbar. The two intrusions formed under imposed oxygen fugacities far above the quartz fayalite-magnetite buffer. Oxygen fugacity estimates suggest that the syenite porphyry in the Yao'an intrusion crystallized under more oxidizing conditions than the Machangging. The similar tectonic setting, emplacement age, magma source region and the only slightly different bulk chemical compositions of the intrusions suggest that the difference in mineralization (Cu vs. Au) of these two intrusions may have been related to the differences in t, p, or f (O_2) during crystallization. The results show that a high f (O_2) and weakly fractionated magma favored Au enrichment relative to Cu in the Jinshajiang-Red River alkaline zone. |
来源
|
矿物学报
,2006,26(4):377-386 【核心库】
|
关键词
|
矿物化学
;
富碱侵入岩
;
铜、金矿化
;
哀牢山—金沙江富碱侵入岩带
|
地址
|
1.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550002
2.
Department of Geology, University of Toronto, Canada
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4734 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
中国科学院西部之光人才培养计划
;
中国科学院知识创新工程项目
;
中国科学院“百人计划”项目
|
文献收藏号
|
CSCD:2637466
|
参考文献 共
53
共3页
|
1.
Ague J J. Thermodynamic calculation of emplacement pressures for batholithic rocks California:implications for the aluminum-in-hornblende barometer.
Geology,1997,25:563-566
|
CSCD被引
12
次
|
|
|
|
2.
Anderson J L. The effects of temperature and fO2 on the Al-in-hornblende barometer.
Am Mineral,1995,80:549-559
|
CSCD被引
118
次
|
|
|
|
3.
Elliott B A.
Lithos,1998,45:109-129
|
CSCD被引
2
次
|
|
|
|
4.
Elliott B A. Crystallization conditions of the Wiborg rapakivi batholith SE Finland:an evaluation of amphibole and biotite mineral chemistry.
Mineralogy and Petrology,2001,72:305-324
|
CSCD被引
8
次
|
|
|
|
5.
Fuhrman M L. Ternary-feldspar modeling and thermometry.
Am Mineral,1988,73:201-215
|
CSCD被引
35
次
|
|
|
|
6.
Ghent E D. Hornblende barometry of the Nelson batholith southeastern British Columbia:Tectonic implications.
Canadian Journal of Earth Scireces,1991,28:1982-1991
|
CSCD被引
2
次
|
|
|
|
7.
Holland T. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry.
Contributions to Mineralogy and Petrology,1994,116:433-447
|
CSCD被引
197
次
|
|
|
|
8.
Loferski P J. Petrography and mineral chemistry of the composite Deboullie pluton northern Maine U.
Chem Geol,1995,123:89-105
|
CSCD被引
10
次
|
|
|
|
9.
Ludington S. The biotte-apatite geothermometer revisited.
Am Mineral,1978,63:551-553
|
CSCD被引
1
次
|
|
|
|
10.
Rowins S M. Magmatic oxidation in the syenitic Murdock Creek intrusion Kirkland lake Ontario:evidence from the ferromagnesian silicates.
Geology,1991,99:395-414
|
CSCD被引
1
次
|
|
|
|
11.
Schmidt M W. Amphibole composition in tonalite as a function of pressure:an experimental calibration of the Al-in-homblende barometer.
Contrib Mineral Petrol,1992,110:304-310
|
CSCD被引
201
次
|
|
|
|
12.
Stewart R B. Evolution of high-K arc magma Egmont volcano Taranaki New Zealand:evidence from mineral chemistry.
Journal of Volcanology and Geothermal Research,1996,74:275-295
|
CSCD被引
1
次
|
|
|
|
13.
Stone D. Temperature and pressure variations in suites of archean felsic plutonic rocks Berens river aera northwest superior province Ontario Canada.
The Canadian Mineralogist,2000,38:455-470
|
CSCD被引
85
次
|
|
|
|
14.
Vyhnal C R. Homblende chemistry in southern Appalachian granitoids:implications for aluminum homblende thermobarometry and magmatic epidote stability.
Am Mineral,1991,76:176-188
|
CSCD被引
3
次
|
|
|
|
15.
Wones D R. Stability of biotite:experiment theory and application.
Am Mineral,1965,50:1228-1272
|
CSCD被引
165
次
|
|
|
|
16.
Zhu C. F-Cl-OH partitioning between biotite and apatite.
Geochim Cosmochim Acta,1992,56:3435-3467
|
CSCD被引
28
次
|
|
|
|
17.
Blevin D L. The role of magma sources oxidization states and fractionation in determing the granite metallogeny of Eastern Australia.
Trans R Soc Edinb Earth Sci,1992,83:305-316
|
CSCD被引
1
次
|
|
|
|
18.
Ishihara S. The granitoid series and mineralization.
Economic Geology,1981:458-484
|
CSCD被引
25
次
|
|
|
|
19.
Lowenstern J B. Evidence for extreme partitioning of copper into a magmatic vapor phase.
Science,1991,252:1405-1409
|
CSCD被引
31
次
|
|
|
|
20.
Mungall J E. Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits.
Geology,2002,30:915-918
|
CSCD被引
224
次
|
|
|
|
|