烧结工艺对Ti/IrO2电极在酸性溶液中电催化活性的影响
Effect of Calcination Procedure on the Electrocatalytic Activities of Ti/IrO2 Electrodes in Acidic Aqueous Solution
查看参考文献23篇
文摘
|
采用循环伏安(CV)与极化曲线测试了几种不同烧结工艺制备所得Ti/IrO2电极在酸性Na2SO4溶液中的电催化活性.对传统单一高温(500℃)烧结与改进的分段烧结及程序升温工艺进行了比较;扫描电镜(SEM)、X射线衍射(XRD)、电化学阻抗谱(EIS)测试表明,传统工艺所得电极裂纹形貌不明显,晶粒尺寸及电极的物理电阻均较大,电化学活性较低;改进工艺则可明显降低Ti基体的氧化,提高电极的导电性,其中程序升温还可使电极表面的裂纹增多,但若该工艺的起始温度较高,电极的表观活性下降. |
其他语种文摘
|
The influence of the calcination procedure on electrocatalytic properties for oxygen evolution at Ti/IrO2 electrodes was investigated by using cyclic voltammetry (CV) and anodic polarization tests. Thermal decomposition at single temperature of 500 ~C for each layer (conventional method) was adopted as the standard procedure. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS) show the standard procedure leads to compact oxide coatings, with large grain distributing on coatings and high resistance of obtained electrodes. Both applying the lower temperatures in first three under-layers (step-method) and the programming heating in each layer can, to some extent, overcome the disadvantages of the conventional procedure, and thereby improve the electrochemical activities of electrodes. By using the modified procedures, the electrode resistance is found to decrease due to the inhibition of substrate oxidation. When using the controlled programming calcination (heating rate), the coating becomes more porous and rugged. |
来源
|
物理化学学报
,2006,22(8):1010-1014 【核心库】
|
关键词
|
Ti/IrO2电极
;
热分解
;
烧结工艺
;
电催化活性
|
地址
|
浙江大学化学系, 杭州, 310027
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6818 |
学科
|
化学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:2441832
|
参考文献 共
23
共2页
|
1.
Beer H B.
J Electrochem Soc,1980,127:C303
|
CSCD被引
2
次
|
|
|
|
2.
Trasatti S.
Eelctrochim Acta,1987,32:369
|
CSCD被引
11
次
|
|
|
|
3.
Trasatti S.
Electrochim Acta,2000,45:2377
|
CSCD被引
72
次
|
|
|
|
4.
Lodi G.
J Electroanal Chem,1990,277:139
|
CSCD被引
3
次
|
|
|
|
5.
Terezo A J.
Electrochim Acta,1999,44:4507
|
CSCD被引
10
次
|
|
|
|
6.
Hu J M.
International Journal of Hydrogen Energy,2004,29:791
|
CSCD被引
31
次
|
|
|
|
7.
Beck F.
Electrochim Acta,1989,34:811
|
CSCD被引
6
次
|
|
|
|
8.
Hu J M.
Corrosi Sci,2002,44:1655
|
CSCD被引
38
次
|
|
|
|
9.
Kim K W.
Electrochim Acta,2002,47:2525
|
CSCD被引
9
次
|
|
|
|
10.
Santana M H P.
J Appl Electrochem,2005,35:915
|
CSCD被引
6
次
|
|
|
|
11.
Mousty C.
Electrochim Acta,1999,45:451
|
CSCD被引
6
次
|
|
|
|
12.
Da Silva L.A.
J Electroanal Chem,1997,427:97
|
CSCD被引
13
次
|
|
|
|
13.
Alves V A.
Electrochim Acta,1998,44:1525
|
CSCD被引
19
次
|
|
|
|
14.
Da Silva,L.M.
J Electroanal Chem,2002,532:141
|
CSCD被引
8
次
|
|
|
|
15.
Roginskaya Y E.
Electrochim Acta,1995,40:817
|
CSCD被引
4
次
|
|
|
|
16.
Vercesi G P.
Thermochim Acta,1991,176:31
|
CSCD被引
9
次
|
|
|
|
17.
Jang G W.
Electrochem Soc,1987,134:1830
|
CSCD被引
2
次
|
|
|
|
18.
Kim K W.
J Electrochem Soc,2002,149:D187
|
CSCD被引
2
次
|
|
|
|
19.
Ouattara L.
J Electrochem Soc,2003,150:41
|
CSCD被引
2
次
|
|
|
|
20.
Spinolo G.
J Electroanal Chem,1997,423:49
|
CSCD被引
12
次
|
|
|
|
|