碳纳米管-Mg65Cu25Gd10非晶复合材料玻璃转变的动力学性质
Kinetics of Glass Transition and Crystallization of Carbon Nanotube Reinforced Mg-Cu-Gd Bulk Metallic Glass
查看参考文献17篇
文摘
|
制备了Mg65Cu25Gd10大块非晶合金及其碳纳米管(CNTs)复合材料,对两种材料进行了不同扫描速率下的差热扫描量热分析,研究了加入CNTs对材料玻璃转变和晶化动力学效应的影响。结果表明:加入CNTs后,复合材料的玻璃转变和晶化行为仍然具有动力学效应,但加入的CNTs减小了材料晶化行为对升温速率的依赖程度;同时,加入CNTs加大了材料发生玻璃转变时需要克服的能量势垒,增大了峰值温度时的晶化反应速率常数,从而降低了材料的玻璃形成能力(GFA);对CNTs降低GFA的原因也进行了探讨。 |
其他语种文摘
|
Mg65Cu25Gd10 bulk metallic glass and its carbon nanotube reinforced composite were prepared. Differential scanning calorimeter (DSC) was used to investigate the kinetics of glass transition and crystallization processes. The influence of CNTs addition to the glass matrix on the glass transition and crystallization kinetics was studied. It is shown that the kinetic effect on glass transition and crystallization are precess. In addition, the CNTs increases the energetic barrier for the glass transition. It results in the decrease of GFA. The mechanism of the GFA decrease was also discussed. |
来源
|
中国稀土学报
,2006,24(1):37-42 【核心库】
|
关键词
|
非晶
;
纳米管
;
玻璃转变
;
晶化
;
动力学
;
复合材料
;
钆
;
稀土
|
地址
|
1.
中科院力学所, 国家微重力实验室, 北京, 100080
2.
郑州大学材料科学与工程学院材料研究中心, 河南, 郑州, 450002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4343 |
学科
|
金属学与金属工艺 |
基金
|
中国科学院创新基金
;
自然科学基金项目资助
|
文献收藏号
|
CSCD:2252847
|
参考文献 共
17
共1页
|
1.
Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J].
Acta Mater,2000,48:56
|
CSCD被引
1
次
|
|
|
|
2.
Amiya K. Thermal stability and mechanical properties of Mg-Y-Cu-M (M=Ag.
Mater.Trans.JIM,2000,41:1460
|
CSCD被引
33
次
|
|
|
|
3.
Yuan G. Thermal stability.
Mater.Trans,2003,44:2271
|
CSCD被引
1
次
|
|
|
|
4.
Men H. Fabrication of ternary Mg-Cu-Gd bulk metallic glass with high glass-forming ability under air atmosphere [J].
Mater.Res,2003,18:1502
|
CSCD被引
24
次
|
|
|
|
5.
Han S M. Phase structure and electrochemical properties of RE-Mg based composite hydrogen storage alloys [J].
Journal of Rare Earths,2004,22(6):878
|
CSCD被引
2
次
|
|
|
|
6.
Carneiro O. Production and assessment of polycarbonate composites reinforced with vapour grown carbon fibres [J].
Comp.Sci.Technol,1998,58:401
|
CSCD被引
1
次
|
|
|
|
7.
Thostenson E T. Carbon nanotube/carbon fiber hybrid multiscale composites [J].
J.Appl.Phys,2002,91(9):6034
|
CSCD被引
39
次
|
|
|
|
8.
Lau K T. The revolutionary creation of new advanced materials-carbon nanotube composites [J].
Composites Part B-Engineering,2002,33(4):263
|
CSCD被引
18
次
|
|
|
|
9.
Thostenson E T. a review [J].
Composites Science and Technology,2001,61(13):1899
|
CSCD被引
204
次
|
|
|
|
10.
Harris P J F. Carbon nanotube composites [J].
International Materials Reviews,2004,49(1):31
|
CSCD被引
26
次
|
|
|
|
11.
Bian Z. Carbon-nanotube-reinforced Zr-based bulk metallic glass composites and their properties [J].
Adv.Fuct.Mater,2004,14:55
|
CSCD被引
4
次
|
|
|
|
12.
Zhuang Y. Kinetics of glass transition and crystallization in multicomponent bulk amorphous alloys [J].
Science in China. Series A, Mathematics (in English),2000,43:1195
|
CSCD被引
1
次
|
|
|
|
13.
Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15 [J].
Mater,1976,23:173
|
CSCD被引
1
次
|
|
|
|
14.
庄艳歆. 锆基大块非晶合金玻璃转变和晶化的动力学效应.
中国科学(A辑),2000,30:445
|
CSCD被引
6
次
|
|
|
|
15.
Kissinger H E. Variation of peak temperature with heating rate in differential thermal analysis [J].
J.Res.Nat.Bur.St,1956,36:866
|
CSCD被引
1
次
|
|
|
|
16.
Xu H. Crystalline behavior and magnetic properties of Nd60Fe30xAl10Cox (x=0.
Journal of Rare Earths,2003,21(5):552
|
CSCD被引
2
次
|
|
|
|
17.
Xi X K. Glass-forming Mg-Cu-RE (RE=Gd.
J.Non-Crystalline Solids,2004,344:105
|
CSCD被引
19
次
|
|
|
|
|