计算Reissner理论各向异性板应力强度因子的半权函数法
SEMI-WEIGHT FUNCTION METHOD FOR CALCULATING STRESS INTENSITY FACTORS OF REISSNER THORY ANISOTROPIC CRACKED PLATE
查看参考文献20篇
文摘
|
由功能互等定理导出用半权函数表示的各向异性板应力强度因子的解析表达式,并给出基于Reissner板理论含裂纹的各向异性板受弯曲、扭转和剪切作用的半权函数。计算含中心裂纹四边自由受纯弯曲作用板的应力强度因子,并与有关的结果进行比较,表明此方法简便、可靠。 |
其他语种文摘
|
A simple and accurate method-semi-weight function method to determine stress intensity factors in anisotropic cracked plates based on Reissner plate theory is proposed. The semi-weight function, including the effect of transverse shear deformation, in an anisotropic plate under bending, twisting moments, and transverse shear loads is presented with Stroh formalism. The stress intensity factors defined in terms of the integral are derived from the Betti' s reciprocal work theorem and expressed in terms of plate resultant quantities on a path and semi-weight function. The method is easily appended to Ansys finite element computer codes. Numerical results of a center-cracked plate under pure bending moment with four lateral boundaries free are given and demonstrate the accuracy and practicality of the method. Accurate computations can be achieved with coarse grids and there is no need for high resolution near the crack tip. The contour of integration can be taken well removed from the singularity thereby using data from regions in which the numerical results are generally smooth. The calculations are not sensitive to the choice of contour. |
来源
|
机械强度
,2006,28(1):113-117 【扩展库】
|
关键词
|
各向异性
;
板半权函
;
数应力强度因子
;
Reissner理论
|
地址
|
中国科学院力学研究所工程科学部, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-9669 |
学科
|
力学 |
文献收藏号
|
CSCD:2242724
|
参考文献 共
20
共1页
|
1.
Liu Chuntu. Semi-weight function method in fracture mechanics.
International Journal of Fracture,1991,48:R3-R8
|
CSCD被引
5
次
|
|
|
|
2.
柳春图. 计算Reissner板应力强度因子的半权函数法.
工程与力学,1999:164-169
|
CSCD被引
1
次
|
|
|
|
3.
马开平. 关于断裂力学中半权函数法的研究[博士学位论文].
关于断裂力学中半权函数法的研究[博士学位论文],2003
|
CSCD被引
1
次
|
|
|
|
4.
马开平. 计算平面I、II型复合应力强度因子的半权函数法.
机械强度,2003,25(5):576-579
|
CSCD被引
3
次
|
|
|
|
5.
马开平. 应用半权函数法计算界面裂纹的应力强度因子.
应用力学学报,2004,21:44-49
|
CSCD被引
3
次
|
|
|
|
6.
Lekhnitskii S G. Theory of elasticity of an anisotropic body.
Theory of elasticity of an anisotropic body,1981
|
CSCD被引
45
次
|
|
|
|
7.
Eshelby J D. Anisotropic elasticity with applications to dislocation theory.
Acta Metall,1953,1:251-259
|
CSCD被引
4
次
|
|
|
|
8.
Stroh A N. Steady state problems in anisotrpic elsticty.
Journal of Mathematics and Physics,1962,41:77-103
|
CSCD被引
16
次
|
|
|
|
9.
Stroh A N. Steady state problems in anisotrpic elsticty.
Journal of Mathematics and Physics,1962,41:77-103
|
CSCD被引
16
次
|
|
|
|
10.
Barnett D M. Synthesis of the sextic and the integral formalism for dislocations.
Phys Norv,1973,7:13-19
|
CSCD被引
2
次
|
|
|
|
11.
Ting T C T. theory and applications.
Anisotropic elasticity:theory and applications,1996
|
CSCD被引
6
次
|
|
|
|
12.
Williams M L. The bending stress distribution at the base of stationary crack.
Transactions of ASME,Journal of Applied Mechanics,1961,28:78-82
|
CSCD被引
5
次
|
|
|
|
13.
Hartranft R J. Effect of plate thickness on the bending stress distribution around through cracks.
Journal of Mathematics and Physics,1968,47:276-291
|
CSCD被引
6
次
|
|
|
|
14.
Knowles J K. On the bending of an elastic plate containing a crack.
Journal of Mathematics and Physics,1960,39:223-236
|
CSCD被引
4
次
|
|
|
|
15.
柳春图. 板壳断裂力学.
板壳断裂力学,2000
|
CSCD被引
11
次
|
|
|
|
16.
Tamate O A. A theory of dislocations in the plate under flexure with application to crack problems.
Technology Reports,Tohoku University,1975,40:67-88
|
CSCD被引
1
次
|
|
|
|
17.
Wang N M. Effects of plate thickness on the bending of an elastic plate containing a crack.
Journal of Mathematics and Physics,1968,47:371-390
|
CSCD被引
3
次
|
|
|
|
18.
Ang D D. Combined stresses in an orthotropic plate having a finite crack.
Transactions of ASME,Journal of Applied Mechanics,1961,28:372-378
|
CSCD被引
2
次
|
|
|
|
19.
Sih G C. Cracks in composition materials.
Mechanics of fracture,Vol.6,1981:76-87
|
CSCD被引
1
次
|
|
|
|
20.
Yuan F G. Asymptotic crack-tip fields in an anisotropic plate subjected to bending.
Composites Science and Technology,2000,60:2489-2502
|
CSCD被引
2
次
|
|
|
|
|