一个新的非常规Hermite型各向异性矩形元的超收敛分析及外推
SUPERCONVERGENCE ANALYSIS AND EXTRAPOLATION OF A NEW UNCONVENTIONAL HERMITE-TYPE ANISOTROPIC RECTANGULAR ELEMENT
查看参考文献16篇
文摘
|
本文对二阶椭圆问题构造了一个新的非常规Hermite型矩形单元并用各向异性插值基本定理证明了其各向异性特征,从而可用于任意的矩形剖分.同时还得到了与网格的正则性假设和拟一致假设无关的超逼近和超收敛性质以及外推.数值结果表明该单元确实是一个具有很好应用价值的单元且与理论分析是相吻合的. |
其他语种文摘
|
In this paper, a new unconventional Hermite-type rectangular element for the second order elliptic problem is constructed. The anisotropic character is proved by using anisotropic interpolate basic theorem, thus this element can be applied to arbitrary rectangular subdivision. At the same time, the superclose and super-convergence properties and extrapolation are obtained, which are independent ofthe regular assumption and quasi-uniform assumption of the meshes. Numerical results which coincide with our theoretical analysis show that this element indeed has very good convergence behavior. |
来源
|
计算数学
,2005,27(4):369-382 【核心库】
|
关键词
|
超逼近
;
超收敛
;
非常规矩形元
;
各向异性
;
外推
|
地址
|
郑州大学数学系, 河南, 郑州, 450002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-7791 |
学科
|
数学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:2129848
|
参考文献 共
16
共1页
|
1.
P G Ciarlet. The Finite Element Method for Elliptic Problem.
The Finite Element Method for Elliptic Problem,1978
|
CSCD被引
66
次
|
|
|
|
2.
S C Brenner. The Mathematical Theory of Finite Element Methods.
The Mathematical Theory of Finite Element Methods,1998
|
CSCD被引
10
次
|
|
|
|
3.
T Apel. Anisotropic Interpolation with Application to the Finite Element Method.
Computing,1992,47(1992):277-293
|
CSCD被引
49
次
|
|
|
|
4.
A Zenisek. The interpolation theory for narrow quadrilateral isoparametric finite elements.
Numerische Mathematik,1995,72:123-141
|
CSCD被引
44
次
|
|
|
|
5.
T Apel. Anisotropic mesh refinement in stabilized Galerkin methods.
Numerische Mathematik,1996,74:261-282
|
CSCD被引
13
次
|
|
|
|
6.
T Apel. Local Estimates and Applications.
Anisotropic Finite Elements: Local Estimates and Applications,1999
|
CSCD被引
10
次
|
|
|
|
7.
S C Chen. Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes.
IMA. J. Numer. Anal,2004,24:77-95
|
CSCD被引
115
次
|
|
|
|
8.
林群. 高效有限元构造与分析.
高效有限元构造与分析,1996
|
CSCD被引
119
次
|
|
|
|
9.
朱起定. 有限元超收敛理论.
有限元超收敛理论,1989
|
CSCD被引
80
次
|
|
|
|
10.
O C Zienkiewicz. The superconvergent patch recovery and a posteriori error estimates.
J. Numer. Meth. Engrg.,1992,33:1331-1364,1365-1382
|
CSCD被引
83
次
|
|
|
|
11.
M Zlamal. Some superconvergence results in the finite element method.
Lecture Notes in Mathematics 606,1977:353-362
|
CSCD被引
3
次
|
|
|
|
12.
M Zlamal. Some superconvergence of gradients in the finite element method (in Russian).
Otdel. Vychisl. Tsentr.,1978:15-22
|
CSCD被引
1
次
|
|
|
|
13.
A H Zhou. An analysis of some high accuracy finite element methods for hyperbolic problems.
SIAM. J. Numer. Math.,2002,39:1014-1028
|
CSCD被引
2
次
|
|
|
|
14.
C M Chen. Structure theory of superconvergence of finite element.
Structure theory of superconvergence of finite element,2002
|
CSCD被引
4
次
|
|
|
|
15.
Z Zhang. Superconvergent derivative recovery of the intermediate finite element family of the second order.
IMA. J. of Numer. Anal.,2001,21:643-666
|
CSCD被引
4
次
|
|
|
|
16.
Z C Shi. A new superconvergence property of Wilson nonconforming finite element.
Numerische Mathematik,1997,78:259-268
|
CSCD被引
23
次
|
|
|
|
|