帮助 关于我们

返回检索结果

一个新的非常规Hermite型各向异性矩形元的超收敛分析及外推
SUPERCONVERGENCE ANALYSIS AND EXTRAPOLATION OF A NEW UNCONVENTIONAL HERMITE-TYPE ANISOTROPIC RECTANGULAR ELEMENT

查看参考文献16篇

文摘 本文对二阶椭圆问题构造了一个新的非常规Hermite型矩形单元并用各向异性插值基本定理证明了其各向异性特征,从而可用于任意的矩形剖分.同时还得到了与网格的正则性假设和拟一致假设无关的超逼近和超收敛性质以及外推.数值结果表明该单元确实是一个具有很好应用价值的单元且与理论分析是相吻合的.
其他语种文摘 In this paper, a new unconventional Hermite-type rectangular element for the second order elliptic problem is constructed. The anisotropic character is proved by using anisotropic interpolate basic theorem, thus this element can be applied to arbitrary rectangular subdivision. At the same time, the superclose and super-convergence properties and extrapolation are obtained, which are independent ofthe regular assumption and quasi-uniform assumption of the meshes. Numerical results which coincide with our theoretical analysis show that this element indeed has very good convergence behavior.
来源 计算数学 ,2005,27(4):369-382 【核心库】
关键词 超逼近 ; 超收敛 ; 非常规矩形元 ; 各向异性 ; 外推
地址

郑州大学数学系, 河南, 郑州, 450002

语种 中文
文献类型 研究性论文
ISSN 0254-7791
学科 数学
基金 国家自然科学基金
文献收藏号 CSCD:2129848

参考文献 共 16 共1页

1.  P G Ciarlet. The Finite Element Method for Elliptic Problem. The Finite Element Method for Elliptic Problem,1978 CSCD被引 66    
2.  S C Brenner. The Mathematical Theory of Finite Element Methods. The Mathematical Theory of Finite Element Methods,1998 CSCD被引 10    
3.  T Apel. Anisotropic Interpolation with Application to the Finite Element Method. Computing,1992,47(1992):277-293 CSCD被引 49    
4.  A Zenisek. The interpolation theory for narrow quadrilateral isoparametric finite elements. Numerische Mathematik,1995,72:123-141 CSCD被引 44    
5.  T Apel. Anisotropic mesh refinement in stabilized Galerkin methods. Numerische Mathematik,1996,74:261-282 CSCD被引 13    
6.  T Apel. Local Estimates and Applications. Anisotropic Finite Elements: Local Estimates and Applications,1999 CSCD被引 10    
7.  S C Chen. Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes. IMA. J. Numer. Anal,2004,24:77-95 CSCD被引 115    
8.  林群. 高效有限元构造与分析. 高效有限元构造与分析,1996 CSCD被引 119    
9.  朱起定. 有限元超收敛理论. 有限元超收敛理论,1989 CSCD被引 80    
10.  O C Zienkiewicz. The superconvergent patch recovery and a posteriori error estimates. J. Numer. Meth. Engrg.,1992,33:1331-1364,1365-1382 CSCD被引 83    
11.  M Zlamal. Some superconvergence results in the finite element method. Lecture Notes in Mathematics 606,1977:353-362 CSCD被引 3    
12.  M Zlamal. Some superconvergence of gradients in the finite element method (in Russian). Otdel. Vychisl. Tsentr.,1978:15-22 CSCD被引 1    
13.  A H Zhou. An analysis of some high accuracy finite element methods for hyperbolic problems. SIAM. J. Numer. Math.,2002,39:1014-1028 CSCD被引 2    
14.  C M Chen. Structure theory of superconvergence of finite element. Structure theory of superconvergence of finite element,2002 CSCD被引 4    
15.  Z Zhang. Superconvergent derivative recovery of the intermediate finite element family of the second order. IMA. J. of Numer. Anal.,2001,21:643-666 CSCD被引 4    
16.  Z C Shi. A new superconvergence property of Wilson nonconforming finite element. Numerische Mathematik,1997,78:259-268 CSCD被引 23    
引证文献 38

1 石东洋 抛物问题各向异性有限元的超收敛分析 应用数学,2007,20(4):659-665
CSCD被引 3

2 石东洋 二阶双曲方程各向异性Hermite型有限元分析 河南大学学报. 自然科学版,2007,37(4):331-333,376
CSCD被引 0 次

显示所有38篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号