贵州石灰岩和砂岩地区C4和C3植物营养元素的化学计量对N/P比值波动的影响
VARIATIONS OF C4 AND C3 PLANT N:P RATIOS INFLUENCED BY NUTRIENT STOICHIOMETRY IN LIMESTONE AND SANDSTONE AREAS OF GUIZHOU
查看参考文献39篇
文摘
|
陆地生态系统植物的生长受到营养元素氮(N)和磷(P)的可利用性的限制.已有的证据表明营养元素的相对丰度将控制生态系统的营养元素循环和能量流动的速度.文章提出如下假设:为了适应环境的变化,植物具有可伸缩性地调整营养元素含量的能力,也就是营养元素化学计量比值变化的能力,植物N/P比值波动的影响不仅来源于N对P的相对可利用性的变化,也来源于其他营养元素化学计量的变化,尤其是与Ca的化学计量的变化.为了验证上述假设,本研究利用3种C4植物和11种C3植物,研究了植物N/P化学计量比值的波动随N与Ca和P与Ca化学计量的变化模式:对C4植物来说,N/P比值的波动主要受生物量P与Ca化学计量变化的影响;而对C3植物来说,则同时受N与Ca和P与Ca化学计量变化的控制,它们之间的相对控制能力的大小将决定植物N/P比值波动的变化梯度,C4植物和C3植物的N/P比值的波动都要受土壤pH值的影响.本研究对了解物种丰度和N对P的相对可利用性、N与Ca,以及P与Ca的化学计量之间关系具有重要意义. |
其他语种文摘
|
Plant growth should be expected to be limited by nitrogen ( N) and phosphorus ( P) availability in mosl terrestrial ecosystems. The evidence indicated thai N to P relative availability, that is N : P ratios, can be used to indicate N or P limitation on plant growth, its variations influence vegetation composition and species richness. To characterize these ecosystem's problems, ecological stoichiometry is being used with increasing frequency. With its increasing use, recent ideas have been appeared that the law of the minimum has a direct connection with chemical stoichiometry of living biomass. For example, C : N ratios, an indicator of plant residue quality, and N : P ratios, an indicator of N or P limitation on plant growth. The relative abundance of key elements determines the rates of nutrient cycles and energy flows in ecosystems. We tested hypothesis that plants have the ability of plastic adjustments of the nutrient concentrations through stoichiometric regulations in living biomass to be adapted for the changes of environments, and that the shifts of N : P ratios should be determined not only by the changes of N to P relative availability, but also by other nutrient stoichiometric regulations, especially Ca, using 3 species of C4 grasses and 11 species of Cj plants. The relationship between the shifts of N : P ratios and N and Ca, P and Ca stoichiometry have been studied in this paper. The results indicated that the shifts of N : P ratios were mainly determined by P and Ca stoichiometric regulations in C4 grasses, and by both N and Ca, and P and Ca stoichiometric regulations in C3 plants; the shifts of N : P ratios for both C4 and C3 plants were, therefore, influenced by soil pH. This paper will be useful for studying the relationship between species richness and N to P relative availability, and N and Ca, P and Ca stoichiometry. |
来源
|
第四纪研究
,2005,25(5):552-560 【核心库】
|
关键词
|
C4草本植物
;
C3植物
;
N/P比值
;
生态化学计量学
;
土壤pH值
;
石灰岩地区
;
砂岩地区
|
地址
|
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550002
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-7410 |
学科
|
农业基础科学;环境科学基础理论 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:2030360
|
参考文献 共
39
共2页
|
1.
Johnson A H. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure.
Oecologia,2003,135:487-499
|
CSCD被引
21
次
|
|
|
|
2.
Zas R. Foliar nutrient status and nutritional relationships of young Pinus radiata D.
Forest Ecology and Management,2003,174(1/3):167-176
|
CSCD被引
5
次
|
|
|
|
3.
Chaneton E J. Nitrogen and phosphorus cycling in grazed and ungrazed plots in a temperate subhumid grassland in Argentina.
Journal of Applied Ecology,1996,33:291-302
|
CSCD被引
5
次
|
|
|
|
4.
Elser J J. Biological stoichiometry from genes to ecosystems.
Ecology Letters,2000,3:540-550
|
CSCD被引
448
次
|
|
|
|
5.
Hessen D O. The role of stoichiometry.
Ecology,2004,85:1179-1192
|
CSCD被引
124
次
|
|
|
|
6.
朴河春. 影响C_4草本植物C/N比值变化的因素与土壤有机C积累的关系.
第四纪研究,2004,24(6):621-629
|
CSCD被引
6
次
|
|
|
|
7.
Koerselman W. A new tool to detect the nature of nutrient limitation.
Journal of Applied Ecology,1996,33:1441-1450
|
CSCD被引
824
次
|
|
|
|
8.
Verhoeven J T A. Nitrogen- or phosphorus-limited growth in herbaceous.
Tree,1996,11:494-497
|
CSCD被引
26
次
|
|
|
|
9.
Tessier J T. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation.
Journal of Applied Ecology,2003,40:523-534
|
CSCD被引
290
次
|
|
|
|
10.
Güsewwell S. Variation and functional significance.
New Phytologist,2004,164:243-266
|
CSCD被引
1
次
|
|
|
|
11.
朴河春. 贵州山区土壤微生物生物量的碳同位素组成与有机碳同位素效应.
第四纪研究,2003,23(5):546-556
|
CSCD被引
13
次
|
|
|
|
12.
Redfield A C. The biological control of chemical factors in the environment.
American Scientist,1958,46:205-222
|
CSCD被引
245
次
|
|
|
|
13.
von Liebig J. Principles of agricultural chemistry with special reference to the late researches made in England.
Cycles of Essential Elements (Benchmark Papers in Ecology) (Vol.1),1974:11-28
|
CSCD被引
1
次
|
|
|
|
14.
Thompson K. A comparative study of leaf nutrient concentrations in a regional herbaceous flora.
New Phytologist,1997,136:679-689
|
CSCD被引
86
次
|
|
|
|
15.
Hobbie S E. Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in Northern Alaska.
Oecologia,2002,131:453-462
|
CSCD被引
49
次
|
|
|
|
16.
Nilsen E T. Phenology.
Oecologia,1981,50:217-224
|
CSCD被引
2
次
|
|
|
|
17.
Cecil J S. Leaf chemical composition and nutrient removal by stems of Leucadendron cvv.
Australian Journal of Experimental Agriculture,1995,35:547-555
|
CSCD被引
2
次
|
|
|
|
18.
Pugnaire F I. Variability of inorganic nutrient concentrations in leaves.
New Phytologist,2001,150:506-507
|
CSCD被引
3
次
|
|
|
|
19.
Vitousek P M. Nutrient cycling in moist tropical forest.
Annual Review of Ecology and Systematics,1986,17:137-167
|
CSCD被引
53
次
|
|
|
|
20.
Reich P B. Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophic Amazonian forest.
Functional Ecology,1995,9:65-76
|
CSCD被引
14
次
|
|
|
|
|