强迫性冷水游泳应激对大鼠行为和海马神经颗粒素的影响
THE EFFECT OF FORCED COLD-WATER SWIMMING STRESS ON BEHAVIOR AND NEUROGRANIN LEVEL OF BRAIN IN RATS
查看参考文献22篇
文摘
|
为考察应激对海马神经颗粒素含量和磷酸化水平的影响,以及神经颗粒素是否涉及应激所致行为效应的脑机制,采用强迫性冷水游泳应激模型,选取40只Sprague-Dawley大鼠,随机分为应激组、装置对照组和正常对照组1和正常对照组2.以旷场试验法测定应激前后大鼠行为的变化,以Western blotting技术测定大鼠海马区域神经颗粒素的总含量和磷酸化水平,并分析两者之间的相互关系.结果表明:应激组动物活动增加,表现出焦虑行为;而海马区域神经颗粒素含量降低,与对照组相比差异具有显著性;且多项行为指标的变化与海马神经颗粒素含量的改变呈显著相关.这些结果提示神经颗粒素有可能在应激所致焦虑行为中起作用,可作为预测应激所致焦虑行为的较为敏感的指标之一.慢性应激过程中海马区域没有发现神经颗粒素的磷酸化反应. |
其他语种文摘
|
To explore the effects of stress on the hippocarapal protein and phosphorylation levels of neurogranin, and the possible role of neurogranin involving in the brain mechanisms underlying stress-induced behavioral changes, in this present study, forced cold-water swimming was used as a stressor, and 40 male Sprague-Dawley rats were randomly distributed into four groups: swimming group, apparatus controls and two cage control groups in the present study. Behavioral changes in rats after stress were observed by open-field test, and neurogranin level of hippocampus was determined by Western blotting. The results showed that neurogranin level of hippocampus in swimming rats was significantly lower than that in upparatus controls or cage controls although changes in phosphorylation of neurogranin on hippocampus was not detected. Moreover, activity of the swimming group also significantly increased. Almost all of the behaviors observed were negatively correlated with the level of neurogranin of hippocampus. These results suggested that neurogranin may play a role in stress-induced anxious behaviors, and could be a sensitive predictor of anxiogenic effect of stress. |
来源
|
心理学报
,2005,37(3):366-372 【核心库】
|
关键词
|
应激
;
行为
;
神经颗粒素
;
海马
|
地址
|
1.
中国科学院心理研究所脑-行为研究中心, 北京, 100101
2.
首都医科大学神经生物学教研室, 北京, 100054
|
语种
|
中文 |
ISSN
|
0439-755X |
学科
|
社会科学总论 |
基金
|
国家自然科学基金
;
中国科学院知识创新工程项目
|
文献收藏号
|
CSCD:1959760
|
参考文献 共
22
共2页
|
1.
Watson J B. Localization of the protein kinase C phosphorylation/calmodulin-binding substrate RC3 in dendritic spines of neostriatal neurons.
Proceedings of the National Academy of Sciences of the United States of America,1992,89(18):8581-8585
|
CSCD被引
6
次
|
|
|
|
2.
Houben M P. an immunohistochemical study.
The Journal of Neuroscience Research,2000,59(6):750-759
|
CSCD被引
7
次
|
|
|
|
3.
Pak J H. Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II.
Proceedings of the National Academy of Sciences of the United States of America,2000,97(21):11232-11237
|
CSCD被引
14
次
|
|
|
|
4.
Miyakawa T. Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components.
Hippocampus,2001,11(6):763-775
|
CSCD被引
12
次
|
|
|
|
5.
Neuner-Jehle M. Neurogranin is locally concentrated in rat cortical and hippocampal neurons.
Brain Research,1996,733(1):149-154
|
CSCD被引
10
次
|
|
|
|
6.
Gerendasy D. Homeostatic tuning of Ca2+ signal transduction by members of the calpacitin protein family.
Journal of neuroscience research,1999,58(1):107-119
|
CSCD被引
9
次
|
|
|
|
7.
Ramakers G M. Long term depression in the CA1 field is associated with a transient decrease inpre- and postsynaptic PKC substrate phosphorylation.
The Journal of biological chemistry,2000,275(37):28682-28687
|
CSCD被引
1
次
|
|
|
|
8.
Slemmon J R. effects of PEP-19.
Molecular neurobiology,2000,22(1/3):99-113
|
CSCD被引
5
次
|
|
|
|
9.
Ramakers G M. Temporal differences in the phosphorylation state of pre- and postsynaptic protein kinase C substrates B-50/GAP-43 and neurogranin during long-term potentiation.
The Journal of biological chemistry,1995,270(23):13892-13898
|
CSCD被引
4
次
|
|
|
|
10.
Ramakers G M. Activation of pre- and postsynaptic protein kinase C during tetraethylammonium-induced long-term potentiation in the CA1 field of the hippocampus.
Neuroscience Letters,2000,286(1):53-56
|
CSCD被引
5
次
|
|
|
|
11.
Ramakers G M. Activation of pre- and postsynaptic protein kinase C during tetraethylammonium-induced long-term potentiation in the CA1 field of the hippocampus.
Neuroscience Letters,2000,286(1):53-56
|
CSCD被引
5
次
|
|
|
|
12.
Fedorov N B. Antibodies to postsynaptic PKC substrate neurogranin prevent long-term potentiation in hippocampal CA1 neurons.
The European journal of neuroscience,1995,7(4):819-822
|
CSCD被引
5
次
|
|
|
|
13.
Neuner-Jehle M. Sleep deprivation differentially alters the mRNA and protein levels of neurogranin in rat brain.
Brain Research,1995,685(1/2):143-153
|
CSCD被引
8
次
|
|
|
|
14.
Chen C C. Alterations of protein kinase C isozyme and substrate proteins in mouse brain after electroconvulsive seizures.
Brain Research,1994,648(1):65-72
|
CSCD被引
5
次
|
|
|
|
15.
Wu J F. Attenuation of protein kinase C and cAMP-dependent protein kinase signal transduction in the neurogranin knockout mouse.
The journal of biological chemistry,2002,277(22):19498-19505
|
CSCD被引
1
次
|
|
|
|
16.
Chen S J. Enhanced phosphorylation of the postsynaptic protein kinase C substrate RC3/neurogranin during long-term potentiation.
Brain Research,1997,749:181-187
|
CSCD被引
6
次
|
|
|
|
17.
Palanza P. how are female different? Neuroscience and Biobehavioral Reviews.
Neuroscience and Biobehavioral Reviews,2001,25:219-223
|
CSCD被引
10
次
|
|
|
|
18.
Dal-Zotto S. Influence of single or repeated experience of rats with forced swimming on behavioural and physiological responses to the stressor.
Behavioural Brain Research,2000,114:175-181
|
CSCD被引
7
次
|
|
|
|
19.
Bilang-Bleue A. Forced swimming evokes a biphasic response in CREB phosphorylation in extrahypothalamic limbic and neocortical brain structure in the rat.
The European journal of neuroscience,2002,15(6):1048-1060
|
CSCD被引
2
次
|
|
|
|
20.
Pijlman F T A. prepulse inhibition increased after physical.
European neuropsychopharmacology,2003,13:369-380
|
CSCD被引
3
次
|
|
|
|
|