|
用FLUENT软件计算化学氧碘激光流场
Computation of mixing flowfield of chemical oxygen-iodine laser with FLUENT software
查看参考文献12篇
文摘
|
用计算流体动力学(CFD)软件FLUENT,数值研究化学氧碘激光喷管形线,碘喷孔位置,副流入口压力,O2(1△)初始产额,水蒸汽含量以及稀释气体对平均小信号增益系数沿流动方向分布的影响;并对大连化学物理研究所超音速化学氧碘激光的两次实验进行数值模拟,计算结果显示平均小信号增益系数与实验测试的摩尔功率趋势一致. |
其他语种文摘
|
The computational simulations of the mixing fiowfield of supersonic chemical oxygen-iodine laser (COIL) using FLUENT (CFD) computation of fluid dynamics commercial software have been performed. The distribution of the averaged small signal gain along the downstream for nozzle profiles, orifices locations, pressure of secondary flow. O2 (] A) yields, content of wa-ter vapor and dilute gases was caculated. The numerical simulation for two experimental conditions of Dalian Institute of Chemical Physics show that the trend of the computational averaged small signal gain coincides with the measured output mole power. |
来源
|
强激光与粒子束
,2005,17(2):181-185 【核心库】
|
关键词
|
化学氧碘激光(COIL)
;
计算流体动力学(CFD)
;
小信号增益分布
|
地址
|
1.
中国科学院,力学研究所, 北京, 100080
2.
北京大学,力学系, 北京, 100871
|
语种
|
中文 |
ISSN
|
1001-4322 |
学科
|
电子技术、通信技术 |
基金
|
国家863计划
|
文献收藏号
|
CSCD:1925966
|
参考文献 共
12
共1页
|
1.
Buggeln R C. Three-dimensional Navier-Stokes analysis of the mixing and power extraction in a supersonic chemical oxygen iodine laser with transverse I2 injection[R].
Three-dimensional Navier-Stokes analysis of the mixing and power extraction in a supersonic chemical oxygen iodine laser with transverse I2 injection.AIAA Paper 94-2435,1994
|
CSCD被引
1
次
|
|
|
|
2.
Lampson A I. Chemical oxygen iodine laser beam quality predictions using 3-d Navier-Stokes (MINT)and wave optics (OCELOT) codes[R].
Chemical oxygen iodine laser beam quality predictions using 3-d Navier-Stokes (MINT)and wave optics (OCELOT) codes.AIAA Paper 98-2991,1998
|
CSCD被引
1
次
|
|
|
|
3.
Madden T J. A comparison of subsonic and supersonic mixing mechanisms for the chemical oxygen - iodine laser using computational fluid dynamic simulations[A].
Proc of SPIE.3612,1999:135-146
|
CSCD被引
1
次
|
|
|
|
4.
Yang T T. Chemical oxygen-iodine laser performance modeling[R].
Chemical oxygen-iodine laser performance modeling.AIAA Paper 97-2384,1997
|
CSCD被引
1
次
|
|
|
|
5.
Yang T T. High Mach number.
High Mach number, high pressure recovery COIL nozzle aerodynamic experiments.AIAA Paper 2000-2425,2000
|
CSCD被引
1
次
|
|
|
|
6.
Madden T J.
A detailed comparison of a computational fluid dynamic simulation and a laboratory experiment for a COIL laser.AIAA Paper 97-2387,1997
|
CSCD被引
1
次
|
|
|
|
7.
Eppard W M. Recent advances in numerical techniques for the design and analysis of COIL systems[R].
Recent advances in numerical techniques for the design and analysis of COIL systems.AIAA Paper 2000-2576,2000
|
CSCD被引
1
次
|
|
|
|
8.
Koop G. Airborne laser flight-weighted laser module (FLM) and COIL modeling support[R].
Airborne laser flight-weighted laser module (FLM) and COIL modeling support.AIAA Paper 2000-2421,2000
|
CSCD被引
1
次
|
|
|
|
9.
Hautman D J. Transverse injection into subsonic air flow[R].
Transverse injection into subsonic air flow.AIAA Paper 91-0576,1991
|
CSCD被引
1
次
|
|
|
|
10.
Wataru M. Three-dimensional mixing/reacting zone structure in a supersonic flow chemical oxygen-iodine laser[J].
JSME International Journal,1997,40(2):209-215
|
CSCD被引
1
次
|
|
|
|
11.
Masuda W. Numerical Simulation of a supersonic flow chemical oxygen-iodine laser solving Navier-Stokes equations[J].
JSME International Journal,1997,40(1):87-92
|
CSCD被引
1
次
|
|
|
|
12.
Paschkewitz J. An assessment of COIL physical property and chemical kinetic modeling methodologies[R].
An assessment of COIL physical property and chemical kinetic modeling methodologies.AIAA Paper 2000-2574,2000
|
CSCD被引
1
次
|
|
|
|
|
|