跨音速翼型反设计的一种大范围收敛方法
A GLOBAL CONVERGENCE METHOD ON INVERSE DESIGN OF TRANSONIC AIRFOIL
查看参考文献17篇
文摘
|
求解跨音速翼型的反设计问题时,传统的梯度型方法一般均为局部收敛.为增大求解的收敛范围,依据同伦方法的思想,通过构造不动点同伦,将原问题的求解转化为其同伦函数的求解,并依据拟Sigmoid函数调整同伦参数以提高计算效率,进而构造出一种具有较高计算效率的大范围收敛反设计方法.数值算例以RAE2822翼型的表面压力分布为拟合目标,分别采用B样条方法,PARSEC方法及正交形函数方法等3种不同的参数化方法,并分别以NACA0012,OAF139及VR15翼型为初始翼型进行迭代计算.计算结果证明,该方法适用于多种参数化方法,且具有较好的计算效率,从多个不同的初始翼型出发,经较少次数迭代后,均能与目标翼型很好地拟合,是一种高效的大范围收敛方法. |
其他语种文摘
|
Inverse design problem can be represented by a nonlinear optimization problem or a complex nonlinear equation. Some traditional algorithms, such as nonlinear least square method, can be used to solve inverse design problems. But unfortunately, they are all local convergence and an unsuitable initial value of iteration may lead to a divergent computational procedure. In this paper, a global convergence method was developed to overcome the shortcoming. Based on the idea of a homotopy method, the original formulation for inverse design was replaced by a homotopy function, and then an iterative local linearization method was used to solve the equation. Moreover, a quasi-sigmoid method was utilized to adjust the homotopy parameter during the iteration, which can assure a stable and efficient iteration procedure. As numerical examples, the surface pressure distribution of RAE2822 airfoil was taken as the target pressure distribution, three parameterization methods, which include B-Spline, PARSEC and Orthogonal Shape Function methods were individual used to parameterize the airfoil shape, and three different airfoil shapes, including NACA0012, OAF139 and VR15 airfoils, were used as the initial shapes, all inverse design results demonstrate the feature of global convergence and efficiency of the presented new method. |
来源
|
力学学报
,2005,37(2):157-163 【核心库】
|
关键词
|
同伦方法
;
跨音速翼型
;
反设计
;
参数化
;
雷诺平均N-S方程
|
地址
|
中国科学院力学研究所, 高温气体动力学重点实验室, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
航空 |
基金
|
国家自然科学基金
;
香港王宽诚教育基金
|
文献收藏号
|
CSCD:1921753
|
参考文献 共
17
共1页
|
1.
Oyama A. Euler/NavierStokes optimization of supersonic wing design Based on evolutionary algorithm.
AIAA Journal,1999,37(10):1327-1329
|
CSCD被引
1
次
|
|
|
|
2.
Giannakoglou KC. Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence.
Progress in Aerospace Sciences,2002,38(1):43-76
|
CSCD被引
13
次
|
|
|
|
3.
Wang X. Aerodynamic shape optimization using computational fluid dynamics and parallel simulated annealing algorithms.
AIAA Journal,2001,39(8):1500-1508
|
CSCD被引
5
次
|
|
|
|
4.
Pandya M J. Gradient-based aerodynamic shape optimization using alternating direction implicit method.
Journal of Aircraft,1997,34(3):346-352
|
CSCD被引
3
次
|
|
|
|
5.
Newman JC. Overview of sensitivity analysis and shape optimization for complex aerodynamic configurations.
Journal of Aircraft,1999,36(1):87-96
|
CSCD被引
4
次
|
|
|
|
6.
刘航. 自适应翼型的气动外形优化设计.
航空学报,2003,23(4):289-293
|
CSCD被引
1
次
|
|
|
|
7.
Takahashi S. Inverse design optimization of transonic wings based on multi-objective genetic algorithms.
AIAA Journal,1999,37(12):1656-1662
|
CSCD被引
3
次
|
|
|
|
8.
Wang X. Inverse transonic airfoil design using parallel simulated annealing and computational fluid dynamics.
AIAA Journal,2002,40(4):791-794
|
CSCD被引
4
次
|
|
|
|
9.
Dulicravich GS. Aerodynamic shape inverse design methods.
New Design Concepts for High Speed Air Transport,1997:159-172
|
CSCD被引
1
次
|
|
|
|
10.
朱自强. 跨音速翼型设计的一种满足正则化条件的反设计方法.
北京航空航天大学学报,1993,19(1):12-19
|
CSCD被引
1
次
|
|
|
|
11.
王则柯. 同伦方法引论.
同伦方法引论,1990
|
CSCD被引
43
次
|
|
|
|
12.
Obayashi S. Pareto genetic algorithm for aerodynamic design using the Navier-Stokes equations.
Genetic Algorithms and Evolution Strategy in Engineering and Computer Science,1998:245-266
|
CSCD被引
1
次
|
|
|
|
13.
Doorly DJ. Supervised Parallel Genetic Algorithms in Aerodynamic Optimization.
Supervised Parallel Genetic Algorithms in Aerodynamic Optimization. AIAA-97-1852,1997
|
CSCD被引
1
次
|
|
|
|
14.
Sobieczky H. Parametric airfoil and wings.
Notes on Numerical Fluid Mechanics,1998:71-88
|
CSCD被引
16
次
|
|
|
|
15.
Yoon S. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations.
AIAA Journal,1988,26(9):1025-1026
|
CSCD被引
158
次
|
|
|
|
16.
Obayashi S. Convergence acceleration of a Navier-Stokes solver for efficient static aeroelastic computations.
AIAA Journal,1995,33(6):1134-1141
|
CSCD被引
6
次
|
|
|
|
17.
Yang G. Aileron buzz simulation using an implicit multiblock aeroelastic solver.
Journal of Aircraft,2003,40(3):580-589
|
CSCD被引
16
次
|
|
|
|
|