剪切水-气界面下湍流猝发特征的实验研究
EXPERIMENTAL INVESTIGATION OF THE BURSTING CHARACTERISTICS UNDER SHEARED AIR-WATER INTERFACE
查看参考文献12篇
文摘
|
利用氢气泡时间线-脉线组合示踪技术定量地考察剪切水-气界面下的湍流猝发现象,分析猝发事件的信号特征,重点探讨猝发与湍能产生之间的联系.在猝发过程中,水面近区的瞬时流速和Reynolds切应力出现较大幅度的脉动,它们在时间和空间垂直方向上表现出高度的相干性,这是猝发事件的一个显著特征.在猝发期,猝发事件涉及的空间区域内Reynolds切应力和湍流脉动强度明显比平均值和非猝发期的情况大.其结果表明:在所考察的实验条件下,猝发是剪切水-气界面附近湍流产生的主要过程. |
其他语种文摘
|
The bursting phenomenon under a sheared air-water interface is quantitatively examined using combined-time-streak markers of hydrogen bubbles. Based upon samples of instantaneous velocity profiles derived from flow visualization pictures, the signal characteristics of bursting event are analyzed, and particular emphasis is placed on the relation between bursting processes and the production of turbulence near air-water interface. During a bursting, the instantaneous velocities and Reynolds shear stress near air-water interface fluctuate in relatively large amplitude, which appear to be associated with the ejection phenomena of low-speed streak. Their high degree of coherence in time and in the vertical direction is the most notable characteristic of bursting event. In bursting times, the values of Reynolds shear stress and turbulence intensity rise considerably in the region where bursting phenomenon is observed, and become much higher than the mean value and that in non-bursting period. The present data establish, for the case studied, that bursting processes is the main contributor of turbulent kinetic energy near sheared air-water interface. |
来源
|
力学学报
,2005,37(2):129-134 【核心库】
|
关键词
|
剪切水-气界面
;
猝发
;
湍动能产生率
;
氢气泡时间线-脉线组合示踪
|
地址
|
1.
中国科学院力学研究所, 国家微重力实验室, 北京, 100080
2.
北京航空航天大学流体力学研究所, 北京, 100083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:1921716
|
参考文献 共
12
共1页
|
1.
Wang SF. An experimental study on turbulent coherent structures near a sheared air-water interface.
Acta Mechanica Sinica(in Eng),1999,15(4):289-298
|
CSCD被引
6
次
|
|
|
|
2.
Wang SF. Some characteristics of low-speed streaks under sheared air-water interfaces.
Acta Mechanica Sinica(in Eng),2001,17(2):115-124
|
CSCD被引
4
次
|
|
|
|
3.
王双峰. 水-气界面下低速流体条带的喷射行为.
力学学报,2002,34(3):305-313
|
CSCD被引
2
次
|
|
|
|
4.
Schraub FA. Use of hydrogen bubbles for quantitative determination of time-dependent velocity fields in low-speed water flows.
ASME J Basic Eng,1965,87:429-444
|
CSCD被引
3
次
|
|
|
|
5.
Kline S J. The structure of turbulent boundary layers.
J Fluid Mech,1967,30:741-773
|
CSCD被引
137
次
|
|
|
|
6.
Kim HT. The production of turbulence near a smooth wall in a turbulent boundary layer.
J Fluid Mech,1971,50:133-160
|
CSCD被引
34
次
|
|
|
|
7.
Grass AJ. Structural features of turbulent flow over smooth and rough boundaries.
J Fluid Mech,1971,50:233-255
|
CSCD被引
19
次
|
|
|
|
8.
Wu J. Laboratory studies of wind-wave interactions.
J Fluid Mech,1968,34:91-111
|
CSCD被引
2
次
|
|
|
|
9.
Howe BM. Comparison of profiles and fluxes of heat and momentum above and below an air-water interface.
ASME J Heat Transfer,1982,104:34-39
|
CSCD被引
2
次
|
|
|
|
10.
Blackwelder RF. On the wall structure of the turbulent boundary layer.
J Fluid Mech,1976,76:89-112
|
CSCD被引
19
次
|
|
|
|
11.
Corino ER. A visual investigation of the wall region in turbulent flow.
J Fluid Mech,1969,37:1-30
|
CSCD被引
2
次
|
|
|
|
12.
Wallace JM. The wall region in turbulent shear flow.
J Fluid Mech,1972,54:39-48
|
CSCD被引
12
次
|
|
|
|
|