|
Upper Bounds for the Laplacian Graph Eigenvalues
查看参考文献10篇
文摘
|
We first apply non-negative matrix theory to the matrix K=D+A, where D and A are the degree-diagonal and adjacency matrices of a graph G, respectively, to establish a relation on the largest Laplacian eigenvalue λ1(G) of G and the spectral radius ρ(K) of K. And then by using this relation we present two upper bounds for λ1(G) and determine the extrernal graphs which achieve the upper bounds. |
来源
|
Acta Mathematica Sinica. English Series
,2004,20(5):803-806 【核心库】
|
DOI
|
10.1007/s10114-004-0332-4
|
关键词
|
Graph
;
Laplacian matrix
;
Largest eigenvalue
;
Upper bound
|
地址
|
Department of Mathematics, University of Science and Technology of China, Hefei, 230026
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1439-8516 |
学科
|
数学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:1868799
|
参考文献 共
10
共1页
|
1.
Merris R.
Linear Algebra and its Applications,1994,197/198:143-176
|
CSCD被引
105
次
|
|
|
|
2.
Mohar B.
The Laplacian spectrum of graphs, Graph Theory, Combinatorics & Applications,1991:871-898
|
CSCD被引
1
次
|
|
|
|
3.
Mohar B.
Some applications of Laplace eigenvalues of graphs, Graph Symmetry,1997:225-275
|
CSCD被引
1
次
|
|
|
|
4.
Grone R.
SIAM J. Discrete Math.,1994,7(2):221-229
|
CSCD被引
21
次
|
|
|
|
5.
Li J S.
Linear and Multilinear Algebra,2000,48(2):117-121
|
CSCD被引
8
次
|
|
|
|
6.
Anderson W N.
Linear and Multilinear Algebra,1985,18:141-145
|
CSCD被引
20
次
|
|
|
|
7.
Li J S.
Linear Algebra and its Applications,1997,265:93-100
|
CSCD被引
17
次
|
|
|
|
8.
Li J S.
Linear Algebra and its Applications,1998,285:305-307
|
CSCD被引
34
次
|
|
|
|
9.
Merris R.
Linear Algebra and its Applications,1998,285:33-35
|
CSCD被引
27
次
|
|
|
|
10.
Horn R A.
Matrix Analysis,1985
|
CSCD被引
397
次
|
|
|
|
|
|