OPTIMAL DELAUNAY TRIANGULATIONS
查看参考文献21篇
文摘
|
The Delaunay triangulation, in both classic and more generalized sense, is studied in this paper for minimizing the linear interpolation error (measure in Lp-norm) for a given function. The classic Delaunay triangulation can then be characterized as an optimal triangulation that minimizes the interpolation error for the isotropic function ‖x‖~2 among all the triangulations with a given set of vertices. For a more general function, a function-dependent Delaunay triangulation is then defined to be an optimal triangulation that minimizes the interpolation error for this function and its construction can be obtained by a simple lifting and projection procedure. The optimal Delaunay triangulation is the one that minimizes the interpolation error among all triangulations with the same number of vertices, i.e. the distribution of vertices are optimized in order to minimize the interpolation error. Such a function-dependent optimal Delaunay triangulation is proved to exist for any given convex continuous function. On an optimal Delaunay triangulation associated with f, it is proved that ▽f at the interior vertices can be exactly recovered by the function values on its neighboring vertices. Since the optimal Delaunay triangulation is difficult to obtain in practice, the concept of nearly optimal triangulation is introduced and two sufficient conditions are presented for a triangulation to be nearly optimal. |
来源
|
Journal of Computational Mathematics
,2004,22(2):299-308 【核心库】
|
关键词
|
Delaunay triangulation
;
Anisotropic mesh generation
;
N term approximation
;
Interpolation error
;
Mesh quality
;
Finite element
|
地址
|
Mathematics Department, The Pennsylvania State University, 美国
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
0254-9409 |
学科
|
数学 |
基金
|
美国国家科学基金
|
文献收藏号
|
CSCD:1848289
|
参考文献 共
21
共2页
|
1.
.
Anisotropic finite elements: Local estimates and applications, Book Series in Numerical Mathematics,1999
|
CSCD被引
1
次
|
|
|
|
2.
Brown K Q.
Inform. Process. Lett.,1979,9:223-228
|
CSCD被引
5
次
|
|
|
|
3.
Long Chen.
Submitted to Math. Comp.,2003
|
CSCD被引
1
次
|
|
|
|
4.
D'Azevedo E F.
SIAM Journal on Scientific and Statistical Computing,1989,6:1063-1075
|
CSCD被引
1
次
|
|
|
|
5.
Dari E A.
sTRUCTURAL oPTIMIZATION,1994,8:181-188
|
CSCD被引
1
次
|
|
|
|
6.
Edelsbrunner H.
Acta Numerica,2000:1-18
|
CSCD被引
1
次
|
|
|
|
7.
Aurenhammer F.
Handbook of Computational Geometry,2000
|
CSCD被引
1
次
|
|
|
|
8.
Steven Fortune.
In Computing in Euclidean Geometry,1992
|
CSCD被引
1
次
|
|
|
|
9.
La Freitag.
International Journal of Numerical Mehtods in Engineering,1997,40:3979-4002
|
CSCD被引
16
次
|
|
|
|
10.
Habashi W G.
Anisotropic mesh optimization for structured and unstructured meshes, Dans 28th Computational Fluid Dynamics Lecture Series,1997
|
CSCD被引
1
次
|
|
|
|
11.
Edelsbrunner H.
Disc. and Comp. Geom.,1986,8(1):25-44
|
CSCD被引
1
次
|
|
|
|
12.
Huang Weizhang.
SIAM J. Sci. Comput. (Submitted),2003
|
CSCD被引
1
次
|
|
|
|
13.
Shewchuk J R.
Annual ACM Symposium on Computational Geometry,1998:86-95
|
CSCD被引
1
次
|
|
|
|
14.
Lamber T.
Proc. 6th Canad. Conf. Comput. Geom.,1994:201-206
|
CSCD被引
1
次
|
|
|
|
15.
Lawson C L.
Mathematical SoftwareIII,1977:161-194
|
CSCD被引
1
次
|
|
|
|
16.
Li Xiangyang.
Sliver-free three dimensional Delaunay mesh generation, PhD thesis,2000
|
CSCD被引
1
次
|
|
|
|
17.
Marshall Bern.
In Computing in Euclidean Geometry, Edited by Ding-Zhu Du and Frank Hwang, World Scientific, Lecture Notes Series on Computing,1992,1
|
CSCD被引
1
次
|
|
|
|
18.
Shmuel Rippa.
Comput. Aided Geom. Design,1990,7:489-497
|
CSCD被引
1
次
|
|
|
|
19.
Shmuel Rippa.
SIAM J. Numer. Anal.,1992,29:257-270
|
CSCD被引
1
次
|
|
|
|
20.
Sibson R.
Computer Journal,1978,21:243-245
|
CSCD被引
28
次
|
|
|
|
|