帮助 关于我们

返回检索结果

OPTIMAL DELAUNAY TRIANGULATIONS

查看参考文献21篇

文摘 The Delaunay triangulation, in both classic and more generalized sense, is studied in this paper for minimizing the linear interpolation error (measure in Lp-norm) for a given function. The classic Delaunay triangulation can then be characterized as an optimal triangulation that minimizes the interpolation error for the isotropic function ‖x‖~2 among all the triangulations with a given set of vertices. For a more general function, a function-dependent Delaunay triangulation is then defined to be an optimal triangulation that minimizes the interpolation error for this function and its construction can be obtained by a simple lifting and projection procedure. The optimal Delaunay triangulation is the one that minimizes the interpolation error among all triangulations with the same number of vertices, i.e. the distribution of vertices are optimized in order to minimize the interpolation error. Such a function-dependent optimal Delaunay triangulation is proved to exist for any given convex continuous function. On an optimal Delaunay triangulation associated with f, it is proved that ▽f at the interior vertices can be exactly recovered by the function values on its neighboring vertices. Since the optimal Delaunay triangulation is difficult to obtain in practice, the concept of nearly optimal triangulation is introduced and two sufficient conditions are presented for a triangulation to be nearly optimal.
来源 Journal of Computational Mathematics ,2004,22(2):299-308 【核心库】
关键词 Delaunay triangulation ; Anisotropic mesh generation ; N term approximation ; Interpolation error ; Mesh quality ; Finite element
地址

Mathematics Department, The Pennsylvania State University, 美国

语种 英文
文献类型 研究性论文
ISSN 0254-9409
学科 数学
基金 美国国家科学基金
文献收藏号 CSCD:1848289

参考文献 共 21 共2页

1.  . Anisotropic finite elements: Local estimates and applications, Book Series in Numerical Mathematics,1999 CSCD被引 1    
2.  Brown K Q. Inform. Process. Lett.,1979,9:223-228 CSCD被引 5    
3.  Long Chen. Submitted to Math. Comp.,2003 CSCD被引 1    
4.  D'Azevedo E F. SIAM Journal on Scientific and Statistical Computing,1989,6:1063-1075 CSCD被引 1    
5.  Dari E A. sTRUCTURAL oPTIMIZATION,1994,8:181-188 CSCD被引 1    
6.  Edelsbrunner H. Acta Numerica,2000:1-18 CSCD被引 1    
7.  Aurenhammer F. Handbook of Computational Geometry,2000 CSCD被引 1    
8.  Steven Fortune. In Computing in Euclidean Geometry,1992 CSCD被引 1    
9.  La Freitag. International Journal of Numerical Mehtods in Engineering,1997,40:3979-4002 CSCD被引 16    
10.  Habashi W G. Anisotropic mesh optimization for structured and unstructured meshes, Dans 28th Computational Fluid Dynamics Lecture Series,1997 CSCD被引 1    
11.  Edelsbrunner H. Disc. and Comp. Geom.,1986,8(1):25-44 CSCD被引 1    
12.  Huang Weizhang. SIAM J. Sci. Comput. (Submitted),2003 CSCD被引 1    
13.  Shewchuk J R. Annual ACM Symposium on Computational Geometry,1998:86-95 CSCD被引 1    
14.  Lamber T. Proc. 6th Canad. Conf. Comput. Geom.,1994:201-206 CSCD被引 1    
15.  Lawson C L. Mathematical SoftwareIII,1977:161-194 CSCD被引 1    
16.  Li Xiangyang. Sliver-free three dimensional Delaunay mesh generation, PhD thesis,2000 CSCD被引 1    
17.  Marshall Bern. In Computing in Euclidean Geometry, Edited by Ding-Zhu Du and Frank Hwang, World Scientific, Lecture Notes Series on Computing,1992,1 CSCD被引 1    
18.  Shmuel Rippa. Comput. Aided Geom. Design,1990,7:489-497 CSCD被引 1    
19.  Shmuel Rippa. SIAM J. Numer. Anal.,1992,29:257-270 CSCD被引 1    
20.  Sibson R. Computer Journal,1978,21:243-245 CSCD被引 28    
引证文献 6

1 陈中贵 构造最优Delaunay三角剖分的拓扑优化方法 计算机辅助设计与图形学学报,2011,23(12):1967-1974
CSCD被引 5

2 齐若同 基于重心Delaunay三角剖分的蓝噪声点采样算法 计算机辅助设计与图形学学报,2018,30(7):1205-1215
CSCD被引 0 次

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号