贵阳市生活垃圾卫生填埋场汞的地气交换特征初步研究
A PRELIMINARY STUDY ON THE SOIL-AIR EXCHANGE OF MERCURY FROM A SANITARY LANDFILL IN GUIYANG
查看参考文献17篇
文摘
|
城市生活垃圾填埋场是日常生活中许多含汞物质的最终归宿地,这些含汞物质有可能通过"再挥发"途径进入大气,从而增加大气的汞负荷.为了研究垃圾填埋场汞的释放强度,2003年11月底我们用配备有自动测汞仪的动力学通量箱法,对贵阳市的一个垃圾卫生填埋场进行了汞通量测定.结果发现无论是半年期的垃圾还是覆土,汞的释放均具有明显的日变化规律,即白昼明显大于夜晚.半年垃圾和覆土的平均汞释放强度分别为502.4和55.2 ng(Hg)·m-2·h-1,远高于国内外背景区的通量值,说明垃圾填埋场已成为一个潜在的大气汞人为释放源.基质中汞含量的差异是造成通量差异的主要因素,而采取覆土措施则可大大减少汞向大气的排放.天气晴朗时光照强度与汞的释放关系密切,是促进气态汞形成的主要驱动力;阴雨初期,降雨则在一定程度上增加了汞的排放. |
其他语种文摘
|
LandfiUing is the most popular method for urban solid waste disposal in China today. Many mercury-bearing materials used daily have been dumped in landfiUing sites without pretreatment, which may lead to a great deal of mercury emission into atmosphere. In late November, 2003, we conducted a field investigation on mercury emission from an urban waste landfiUing site in Guiyang, using the dynamic flux chamber (DFC) technique coupled with automatic mercury vapor analyzer - TEKRAN 2537A. Two sites with and without soil coverage for half a year were selected, the former site occupies the most part of the landfill. When the DFC covered the waste directly, emission values reached the maximum, the average flux rate was 502. 4ng m~(-2) h~(-1) with the range of -286. 2-5609. 6ng m~(-2) h~(-1) (N = 164) , which apparently exceeds the average flux of 55. 2 ng m~(-2) h~(-1)(N = 105) in the case of DFC over the coverage soil. Both fluxes showed obvious variations, with high values in daytime. The differences in mercury contents of the matrix caused the discrepant emission rates. Solar radiation has good correlations with the mercury flux on fine days, indicating solar energy is an important factor affecting the formation of mercury vapor. The precipitation would also stimulate mercury emission after a long time drought. From this study we have recognized that landfiU-ing sites are also a potential anthropogenic mercury source to atmosphere in China, but some measures such as soil covering will reduce the intensity of mercury emission drastically. |
来源
|
地球与环境
,2004,32(2):1-5 【核心库】
|
关键词
|
汞
;
地-气交换
;
垃圾填埋场
;
动力学通量箱
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550002
2.
Cebam Analytical Laboratories, 美国, Seattle
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1672-9250 |
学科
|
环境科学基础理论 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:1675640
|
参考文献 共
17
共1页
|
1.
刘新英. 我国城市生活垃圾的现状及处理对策[J].
重庆环境科学,1994,16(2):38-41
|
CSCD被引
5
次
|
|
|
|
2.
段世江. 我国城市生活垃圾问题及管理对策探析[J].
河北大学学报,2001,26(1):83-87
|
CSCD被引
2
次
|
|
|
|
3.
Lindberg S E. Methylated mercury species in municipal waste landfill gas sampled in Florida.
Atmospheric Environment,2001,35(23):4011-4015
|
CSCD被引
10
次
|
|
|
|
4.
Lindberg S E. a short term study in Florida[J].
Journal of Air Waste Manage Association,1999,49:174-185
|
CSCD被引
4
次
|
|
|
|
5.
Kim K H. The soil–air exchange characteristics of total gaseous mercury from a large scale municipal landfill area[J].
Atmospheric Environment,2001,35(20):3475-3493
|
CSCD被引
7
次
|
|
|
|
6.
Kim K H. Mercury emissions as landfill gas from a large-scale abandoned landfill site in Seoul[J].
Atmospheric Environment,2002,36:4919-4928
|
CSCD被引
6
次
|
|
|
|
7.
王少峰. 贵州红枫湖地区冷暖两季土壤大气界面间气态汞交换通量的对比[J].
环境科学,2004,25(1):123-127
|
CSCD被引
8
次
|
|
|
|
8.
王少峰. 夏季红枫湖地区农田土壤-大气界面汞交换通量的初步研究[J].
矿物岩石地球化学通报,2004,23(1):19-23
|
CSCD被引
2
次
|
|
|
|
9.
冯新斌. 土壤挥发性汞释放通量的研究.
环境科学,1996,17(2):20-22,25
|
CSCD被引
32
次
|
|
|
|
10.
冯新斌. 夏季自然水体与大气界面间气态总汞的交换通量.
中国科学(D辑),2002,32(7):609-616
|
CSCD被引
11
次
|
|
|
|
11.
Gustin M S. Assessing the contribution of natural sources to regional atmospheric mercury budgets[J].
The Science of the Total Environment,2000,259:61-71
|
CSCD被引
20
次
|
|
|
|
12.
Engle M A. Flowery Peak.
The Science of the Total Environment,2002,290:91-104
|
CSCD被引
5
次
|
|
|
|
13.
Carpi A. tests and results over background soil[J].
Atmospheric Environment,1998,32(5):873-882
|
CSCD被引
22
次
|
|
|
|
14.
Lindqvist O. recent research on causes.
Water, Air and Soil Pollution,1991,55:1-251
|
CSCD被引
124
次
|
|
|
|
15.
Gustin M. Investigation of the light-enhanced emission of mercury from naturally enriched substrates[J].
Atmospheric Environment,2002,36:3241-3254
|
CSCD被引
2
次
|
|
|
|
16.
Poissant L. Water-air and soil-air exchange rate of total gaseous mercury measured at background sites[J].
Atmospheric Environment,1998,32(5):883-893
|
CSCD被引
19
次
|
|
|
|
17.
Lindberg S. Increases in mercury emissions from desert soils in response to rainfall and irrigation[J].
J Geophys Res Atmos,1999,104(D17):21879-21888
|
CSCD被引
1
次
|
|
|
|
|