超高周疲劳研究现状及展望
RETROSPECT AND PROSPECT OF VERY HIGH CYCLE FATIGUE
查看参考文献51篇
文摘
|
超高周疲劳是指疲劳周次达到108及其以上时材料的疲劳行为.与一般认识的疲劳行为不同之处是,超高周疲劳发生在传统疲劳极限以下,因此研究超高周疲劳行为有助于进一步理解疲劳的本质和疲劳机理.文中综述近几年超高周疲劳研究的进展,包括超高周疲劳的典型特征,如S-N曲线的特点、断口特征、断面上的鱼眼形貌以及裂纹的起源与扩展特征等;分析疲劳机理和相关的模型以及简要探讨影响超高周疲劳的一些因素,如加载频率、加载方式、氢的作用等.在此基础上提出值得进一步研究的几个问题. |
其他语种文摘
|
High cycle fatigue is the most common reasons for failure of components and structures. Most of the fatigue tests were accomplished below ten to hundreds millions of cycles in literature. However, railway wheels and rails, offshore structures, bridges, etc., have to endure fatigue loads up to ten billion cycles without failure. Very high cycle fatigue (VHCF) is the study of fatigue failure behaviors of materials and structures at and beyond hundreds millions of cycles. Even in some ferrous materials, which were assumed to have a fatigue limit, very high cycle fatigue failures are detected. Till now, there are few of fatigue tests, failure analysis and mechanisms of VHCF fatigue, compared with the abundant result on low cycle fatigue(LCF) and high cycle fatigue(HCF) regime. This paper summarizes works of VHCF fatigue in recent years, such as the observations on fish-eye, which is one of the typical characteristics of VHCF fatigue, crack initiation, crack propagation and discussions about the shape of S-N curve, etc. The present work also analyzes the fatigue mechanisms and concludes some theoretical models of VHCF fatigue. Some possible and prospective aspects of future researches are also proposed. |
来源
|
机械强度
,2004,26(5):526-533 【扩展库】
|
关键词
|
超高周疲劳
;
疲劳机理
;
疲劳极限
;
内部裂纹起源
|
地址
|
1.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100080
2.
中科院力学所, 非线性力学国家重点实验室, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-9669 |
学科
|
力学 |
文献收藏号
|
CSCD:1651204
|
参考文献 共
51
共3页
|
1.
Miller K J. A historical perspective of the important parameters of metal fatigue.
Proceedings of the 7th Intemational Fatigue Congress,1999:15-39
|
CSCD被引
1
次
|
|
|
|
2.
Stanzl-Tschegg S E. Variable amplitude loading in the very high cycle regime.
Fatigue Fract. Engng. Mater. Struct,2002,25:887-896
|
CSCD被引
8
次
|
|
|
|
3.
Tanaka K. Fatigue crack propagation behavior derived from S-N data in very high cycle regime.
Fatigue Fract. Engug. Mater. Struct,2002,25:775-784
|
CSCD被引
28
次
|
|
|
|
4.
Lukás P. Specific features of high-cycle and ultra-high-cycle fatigue.
Fatigue Fract. Engng. Mater. Struct,2002,25:747-753
|
CSCD被引
1
次
|
|
|
|
5.
Murakami Y. Mechanism of fatigue failure in ultralong life regime.
Fatigue Fract. Engng. Mater. Struct,2002,25:735-746
|
CSCD被引
44
次
|
|
|
|
6.
Nishijima S. Stepwise S-N curve and fish-eye failure in gigacycle fatigue.
Fatigue Fract. Engng. Mater. Struct,1999,22:601-607
|
CSCD被引
19
次
|
|
|
|
7.
Wang Q Y. Gigacycle fatigue of ferrous alloys.
Fatigue Fract. Engng. Mater. Struct,1999,22:667-672
|
CSCD被引
37
次
|
|
|
|
8.
Furuya Y. Gigacycle fatigue properties for highstrength low-alloy steel at 100 Hz.
Scripta Materialia,2002,46(2):157-162
|
CSCD被引
17
次
|
|
|
|
9.
Stanzl S. Fatigue crack growth under combined mode Ⅰ and mode Ⅱ loading.
Fracture Mechanics: Perspectives and Directions, ASTM STP 1020,1989:479-496
|
CSCD被引
1
次
|
|
|
|
10.
Stanzl S. A new experimental method for measuring life time and crack growth of materials under multi-stage and random loadings.
Ultrasonics,1981,19:269-272
|
CSCD被引
2
次
|
|
|
|
11.
Stanzl S. Influence of environment on fatigue crack growth in the threshold region.
Acta Metallurgica,1981,29(1):21-32
|
CSCD被引
1
次
|
|
|
|
12.
Ebara R. Ultrasonic corrosion fatigue testing of 13Cr stainless steel and Ti-6A1-4V alloys.
Ultrasonic Technology,1987:329-342
|
CSCD被引
1
次
|
|
|
|
13.
Puskár A. Influence of temperature on fatigue crack growth behavior of steels at ultrasonic frequency.
Fatigue Fract. Engng. Mater. Struct,1986,9:143-150
|
CSCD被引
1
次
|
|
|
|
14.
Wu T. An automatic ultrasonic fatigue testing system for studying low crack growth at room and high temperatures.
Automation in Fatigue and Fracture, ASTM STP 1231,1994
|
CSCD被引
1
次
|
|
|
|
15.
Sakai T. Experimental evidence of duplex S-N characteristics in wide life region for high strength steels.
Proceedings of the 7th Intemational Fatigue Congress,1999:573-578
|
CSCD被引
1
次
|
|
|
|
16.
Ishikawa K. Endurance limit and fatigue crack propagation of maguesium alloys.
International Conference 2001: Fatigue in Very High Cycle Regime,2001:199-206
|
CSCD被引
1
次
|
|
|
|
17.
Zettl B. Fatigue properties of Aluminum foams at very high numbers of cycles.
International Conference 2001: Fatigue in Very High Cycle Regime,2001:237-244
|
CSCD被引
1
次
|
|
|
|
18.
Masuda C. Relationship between fatigue strength and hardness for high strength steels.
Trans. JSME. A,1986,52:847-852
|
CSCD被引
3
次
|
|
|
|
19.
Naito T. Fatigue behavior of carburized steel with internal oxides and nonmartensitic microstructure near the surface.
Metal Trans. SA,1984,1:1431-1436
|
CSCD被引
1
次
|
|
|
|
20.
Honeycombe R W K. The plastic deformation of metals.
The plastic deformation of metals. Second edition,1984:411-416
|
CSCD被引
1
次
|
|
|
|
|