偶应力问题的杂交/混合元分析
Hybrid/mixed finite element analysis of couple-stress problems
查看参考文献18篇
文摘
|
将弹性力学中Hellinger-Reissner变分原理推广到偶应力理论中,并以罚函数的形式引入其的束条件,提出了一种有效的杂交/混合单元。文中分别分析了带中心小孔平板在轴向均匀加载时的应力集中情况,以及含中间裂纹的无限平板单轴拉伸时的位移场和应力场。算例表明,该单元计算效率高,精度好,即使在材料本征长度很小时,仍然能够得到相当理想的结果。 |
其他语种文摘
|
In this paper the Hellinger-Reissner variational principle in classical elasticity is extended to couple-stress theory. Based on the generalized variational principle?a new effective hybrid/mixed finite element method for couple-stress theory is put forward and its constraint is introduced by a penalty function technique. In addition, the single element stability conditions and its patch stability test are discussed. Farther the verification for the element eigenvalues makes sure that the present mothod is reliable. Two numerical examples are given: the stress concentration around a central circular hole in a uniformly axially loaded field,and the displacement and stress fields around a crack in an infinite plate of uni-axial tension. The numerical results show that the present method has high efficiency and good accuracy. The considerably satisfying results can be obtained, even if the characteristic length is very small. |
来源
|
计算力学学报
,2003,20(4):427-433 【核心库】
|
关键词
|
偶应力理论
;
杂交/混合元
;
罚函数
;
稳定性条件
|
地址
|
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-4708 |
学科
|
数学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:1167287
|
参考文献 共
18
共1页
|
1.
Cosserat E. Theorie Des Corps Defor-mables[M].
Theorie Des Corps Defor-mables,1909
|
CSCD被引
1
次
|
|
|
|
2.
Toupin R A. Elastic materials with couple stresses[J].
Arch Rational Mech Anal,1962,11:385-414
|
CSCD被引
97
次
|
|
|
|
3.
Mindlin R D. Effects of couple stre-sses in linear elasticity[J].
Arch Rational Mech Anal,1962,11:415-448
|
CSCD被引
94
次
|
|
|
|
4.
Mindlin R D. Influence of couple stresses on stress concentrations[J].
Exp Mech,1963,3:1-7
|
CSCD被引
48
次
|
|
|
|
5.
Eringen A C. Linear theory of micropolar elasticity[J].
J Math Mech,1966,15:909-923
|
CSCD被引
21
次
|
|
|
|
6.
Eringen A C. Theory of Micropolar Elasticity[A].
Fracture,1968
|
CSCD被引
2
次
|
|
|
|
7.
Koiter W T. Couple stresses in the theory of elasti-city.
Proc Royal Netherlands Acad Sci,Series B,1964:17-44
|
CSCD被引
1
次
|
|
|
|
8.
Fleck N A. Theory and experiment[J].
Acta Metall Mater,1994,42:475-487
|
CSCD被引
200
次
|
|
|
|
9.
Itou S. The effect of couple-stresses on the stress concentration around an elliptic Hole[J].
Acta Mech,1973,16:289-296
|
CSCD被引
2
次
|
|
|
|
10.
Sternberg E. The effect of couple-stresses on the stress concentration around a crack[J].
Int J Solids Struct,1967,3:69-95
|
CSCD被引
5
次
|
|
|
|
11.
Herrmann L R. Mixed finite elements for couple-stress analysis[A].
Hybrid and Mixed Finite Element Methods,1983:1-17
|
CSCD被引
6
次
|
|
|
|
12.
Wood R D. Finite element analysis of plane couple-stress problems using first order stress functions[J].
Int J Num Meth Engng,1988,26:489-509
|
CSCD被引
14
次
|
|
|
|
13.
Herrmann L R. Finite element bending analysis for plates[J].
J Engng Mech Div ASCE,1967,93(5):13-26
|
CSCD被引
3
次
|
|
|
|
14.
Herrmann L R. Finite element bending analysis for plates[J].
J Engng Mech Div ASCE,1967,93(5):13-26
|
CSCD被引
3
次
|
|
|
|
15.
Reissner E. On a variational theorem in elasticity[J].
J Math Phys,1950,29:90-95
|
CSCD被引
31
次
|
|
|
|
16.
Zienkiewicz O C. The Finite Element Method[M].
The Finite Element Method(3rd edn),1977
|
CSCD被引
1
次
|
|
|
|
17.
Wu C C. Dual zero energy modes in mixed/hybrid elements-definition.
Comp Meth Appl Mech Eng,1990,81:39-56
|
CSCD被引
4
次
|
|
|
|
18.
Huang Y. Analytic and numerical studies on mode Ⅰ and mode Ⅱ fracture in elastic-plastic materials with strain gradient effects[J].
Inter J Fracture,1999,100:1-27
|
CSCD被引
5
次
|
|
|
|
|