中等雷诺数圆柱尾流旋涡脱落的控制
Control of vortex shedding at moderate Reynolds numbers
查看参考文献19篇
文摘
|
介绍通过实验对圆柱尾流旋涡脱落进行抑制的方法及其结果。实验模型的展径比为38,实验的雷诺数范围为3 * 10~2~1.6 * 10~3。抑制方法是在圆柱(直径为D)表面沿展向每隔一定间距伸出一直径0.18D、长度为1.5D的小棒,实验结果表明,当棒间距小于3D,棒与来流夹角在30 °~ 90 °范围内,可有效抑制旋涡脱落。 |
其他语种文摘
|
The suppression of vortex shedding from a circular cylinder has been studied experimentally in the Reynolds number range from 300 to 1600. The test was carried out in a water channel. The model cylinder was 1 cm in diameter, 38 cm in length. It was made of plexiglas and had a smooth surface. The cylinder was mounted on endplates at both ends and placed horizontally across the channel. Vortex shedding occurred to the cylinder in the Re number range tested. In order to suppress vortex shedding, a row of small rods of diameter 0.18 cm and length 1.5 cm were placed along the meridian of the cylinder. One end of each rod was perpendicularly connected to the surface of the cylinder, and the other end exposed to the fluid. The rod distance and the angle of attack of the rods could be changed in order to adjust the suppression effect. The rod distance range tested was l/D = 1.0 ~3.0, and the range of angle of attack was β = 0 °~ 90 °. The fluctuating velocities of the wake before and after suppression were measured by a Laser-Doppler Velometer at places 15 ~ 20 cm from the cylinder. Some typical fluctuating velocities in suppressed and unsuppressed wake and their power spectra have been given in the paper. The distributions of the root-mean-square (r.m.s.) value of fluctuating velocities across the wake have also been given. To a fixed rod distance l/D = 1.0 and Reynolds number Re = 1600, when the angle of attack is in the zone 30 ° ≤ β< 90 °, the method is very effective, vortex shedding is totally suppressed. When β is small, say, β = 0 °, the method is less effective, vortex shedding can not be suppressed. Compare to the maximum r.m.s. value of fluctuating velocity in unsuppressed wake, the values in the wakes when angle of attack β = 0 °, 30 °, 45 °, 60 ° and 90 ° can be reduced to 70%, 55%, 51%, 48% and 61% respectively. The rod distance also influences the suppression effect. To a fixed angle of attack β = 30 ° and Reynolds number Re = 1600, the maximum r.m.s. value of fluctuating velocity in rod distance l/D = 1,2,3 are respectively 55%, 61% and 64% the value of that in unsuppressed wake. |
来源
|
力学学报
,2002,34(4):609-615 【核心库】
|
关键词
|
流动控制
;
旋涡脱落抑制
;
流致振动
;
圆柱
;
中等雷诺数
|
地址
|
1.
中国科学院力学研究所, 北京, 100080
2.
北京大学, 湍流与复杂系统国家重点实验室, 北京, 100871
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:1013843
|
参考文献 共
19
共1页
|
1.
Blevins R D.
Flow Induced Vibration,1977
|
CSCD被引
1
次
|
|
|
|
2.
Pesce C P. Vortex induced vibrations and jump phenomenon: Experiments with a clamped flexible cylinder in water.
Int J Offshore & Polar Eng,2000,10(1):26-33
|
CSCD被引
1
次
|
|
|
|
3.
Vandiver J K. Research challenges in the vortex induced vibration prediction of marine riser: OTC 8698, 30th Ann.
SPE Offshore Tech Conf, Vol 2,1998:155-163
|
CSCD被引
1
次
|
|
|
|
4.
Farnes G K. A field study of flow induced vibration on a deep water drilling riser: OTC 8702, 30th Ann.
SPE Offshore Tech. Conf, Vol 2,1998:199-208
|
CSCD被引
1
次
|
|
|
|
5.
Allen D W. Vortex induced vibration of deep water risers: OTC 8703, 30th Ann.
SPE Offshore Tech Conf, Vol 2,1998,2:209-215
|
CSCD被引
1
次
|
|
|
|
6.
Govardhan R. Modes of vortex formation and frequency response of a freely vibrating cylinder.
J Fluid Mech,2000,420:85-130
|
CSCD被引
87
次
|
|
|
|
7.
Newman D J. A direct numerical simulation study of flow past a freely vibrating cable.
J Fluid Mech,1997,334:95-135
|
CSCD被引
29
次
|
|
|
|
8.
Kitagawa T. An experimental study on vortex-induced vibration of a circular cylinder tower at a high wind speed.
J Wind Eng & Indus Aerodyn,1997,69/71:731-744
|
CSCD被引
5
次
|
|
|
|
9.
You D. Control of flow induced noise behind a circular cylinder using splitter plates.
AIAA J,1998,36(11):1961-1967
|
CSCD被引
15
次
|
|
|
|
10.
Schumm. Self-excited oscillations in the wake of two-dimensional bluff bodies and their control.
J Fluid Mech,1994,271:17-53
|
CSCD被引
1
次
|
|
|
|
11.
Wood C J. The effect of base bleed on a periodic wake.
J R Aeronaut Soc,1964,68:477-482
|
CSCD被引
1
次
|
|
|
|
12.
Berger E. Suppression of vortex shedding and turbulence behind oscillating cylinders.
Phys Fluids,1967,10:s191-s193
|
CSCD被引
2
次
|
|
|
|
13.
Tokumaru D T. Rotary oscillating control of a cylinder wake.
J Fluid Mech,1991,224:77-90
|
CSCD被引
2
次
|
|
|
|
14.
Lecordier J C. The control of vortex shedding behind heated cylinders at low Reynolds numbers.
Exps Fluids,1991,10:224-229
|
CSCD被引
5
次
|
|
|
|
15.
Blevins R D. The effect of sound on vortex shedding from cylinders.
J Fluid Mech,1985,161:217-237
|
CSCD被引
9
次
|
|
|
|
16.
Strykowsky P J. On the formation and suppression of vortex shedding at low Reynolds numbers.
J Fluid Mech,1990,218:71-83
|
CSCD被引
3
次
|
|
|
|
17.
Walshe D E. Preventing wind induced oscillations of structures of circular sections.
Proc Inst Civil Engrs (London),1970,47:1-24
|
CSCD被引
2
次
|
|
|
|
18.
Roussopoulos K. Feedback control of vortex shedding at low Reynolds numbers.
J Fluid Mech,1993,248:267-296
|
CSCD被引
5
次
|
|
|
|
19.
邵传平. 尾流控制与低频不稳定性.
第五届全国风工程及工业空气动力学学术会议论文集,1998:281-286
|
CSCD被引
1
次
|
|
|
|
|