帮助 关于我们

返回检索结果

基于二阶B样条的ILK流量反褶积算法改进及应用
Improvement and application of ILK flow-rate deconvolution algorithm based on the second-order B-splines

查看参考文献24篇

刘文超 1,2 *   刘曰武 2   朱维耀 1   孙贺东 3  
文摘 受ILK压力反褶积算法压力计算精度高的启发,基于一个等价的褶积积分方程,改用流量数据代替原算法所采用的累积流量数据进行反褶积计算,并给出了反褶积算法的快速求解方法:利用褶积积分的数学性质,采用按照压力降落段进行分段积分的方法,快速地解析求解反褶积计算过程中的敏感性矩阵;同时利用二分法快速查找每组流量数据点所属的压力降落段,进一步提高了计算效率。通过理论算例和实际算例的测试分析表明,改进后的ILK流量反褶积算法具有更高的计算精度,尤其使初始和后期阶段的流量数据精度有了较大提高,实际算例的计算结果更加符合单位井底压力降下的流量递减变化规律。与原算法相比,改进算法在产量递减分析时可以获得更长的表征拟稳态流的特征直线段,显著提高了数据的拟合效果,也具备较高的计算速度、稳定性及实用性。因此,将该反褶积算法应用于产量递减分析不仅可以有效降低数据误差影响的敏感性,还可以获得更多的数据信息量,提高数据的拟合效果,降低解释结果的不确定性。
其他语种文摘 Inspired by the high-accuracy pressure calculation of ILK production-pressure deconvolution algorithm and based on an equivalent convolution integral equation,the intrinsic accumulative flow data were replaced by flow rate data to carry out the deconvolution calculation.Meanwhile,the fast solution method of deconvolution algorithm was also presented.Using the mathematical property of deconvolution integral,a method of subsection integral was adopted according to the pressure decline segments,so as to quickly analytically solve the sensitivity matrix in deconvolution calculation.Simultaneously,the dichotomy was also applied to quickly search for the pressure decline segment at the data point of each flow rate set,further improving the calculation efficiency.In-depth analyses on theoretical and actual case tests indicate that the improved ILK flow-rate deconvolution algorithm has higher calculation accuracy;especially in the initial and the later periods,the accuracy of flow rate data has been largely improved;the calculation results for actual cases are more consistent with the production rate decline laws corresponding to the unit wellbore pressure drop.In contrast with the original algorithm,the longer characteristic line segments for representing quasi-steady state flow can be gained when analyzing the production decline,obviously improving the data fitting effect.The improved algorithm also exhibits very high calculation speed,good stability and practicability.Therefore,the application of this deconvolution algorithm to production decline analysis can not only effectively reduce the sensibility influenced by data errors,but also acquire more data information,improving data fitting effects and reducing the uncertainty of interpretation results.
来源 石油学报 ,2018,39(3):327-334 【核心库】
DOI 10.7623/syxb201803008
关键词 反褶积 ; 产量递减分析 ; 二阶B样条 ; 最小二乘法 ; 生产数据
地址

1. 北京科技大学土木与资源工程学院, 北京, 100083  

2. 中国科学院力学研究所, 北京, 100190  

3. 中国石油勘探开发研究院气田开发研究所, 河北, 廊坊, 065007

语种 中文
文献类型 研究性论文
ISSN 0253-2697
学科 石油、天然气工业
基金 国家重大科技专项 ;  国家自然科学基金 ;  中央高校基本科研业务费专项资金
文献收藏号 CSCD:6204984

参考文献 共 24 共2页

1.  刘能强. 实用现代试井解释方法. (5版),2008 CSCD被引 4    
2.  Cinar M. A comparative study of recent robust deconvolution algorithms for well-test and production-data analysis. SPE102575,2006 CSCD被引 1    
3.  Onur M. An investigation of recent deconvolution methods for well-test data analysis. SPE 102575,2006 CSCD被引 1    
4.  Gringarten A C. Practical use of well-test deconvolution. SPE134534,2010 CSCD被引 2    
5.  林加恩. 未出现径向流的试井典型曲线及其分析方法. 石油学报,2017,38(5):562-569 CSCD被引 3    
6.  Von Schroeter T. Deconvolution of well-test data as a nonlinear total least-squares problem. SPE Journal,2004,9(4):375-390 CSCD被引 6    
7.  Levitan M M. Practical application of pressure-rate deconvolution to analysis of real well tests. SPE Reservoir Evaluation &Engineering,2005,8(2):113-121 CSCD被引 6    
8.  Levitan M M. Practical considerations for pressure-rate deconvolution of well test data. SPE Journal,2006,11(1):35-47 CSCD被引 1    
9.  Levitan M M. Deconvolution of multiwell test data. SPE 102484,2007 CSCD被引 2    
10.  Ilk D. Deconvolution of variable-rate reservoir performance data using B-splines. SPE 95571,2005 CSCD被引 1    
11.  李勇. 反褶积法在气井早期地层测试解释中的应用. 石油学报,2010,31(2):298-301 CSCD被引 5    
12.  王飞. 致密气藏压裂水平井反卷积试井模型. 石油学报,2016,37(7):898-902 CSCD被引 9    
13.  Liu W C. An improved deconvolution algorithm using B-splines for well-test data analysis in petroleum engineering. Journal of Petroleum Science and Engineering,2017,149:306-314 CSCD被引 3    
14.  Pimonov E. A new pressure/ratedeconvolution algorithm to analyze wireline-formation-tester and well-test data. SPE123982,2009 CSCD被引 1    
15.  Cumming J. Multiwell deconvolution. SPE166458,2013 CSCD被引 1    
16.  Kuchuk F J. Decline curves from deconvolution of pressure and flow-rate measurements for production optimization and prediction. SPE 96002,2005 CSCD被引 1    
17.  魏明强. 基于物质平衡修正的页岩气藏压裂水平井产量递减分析方法. 石油学报,2016,37(4):508-515 CSCD被引 17    
18.  陈元千. 广义递减模型的建立及应用. 石油学报,2016,37(11):1410-1413 CSCD被引 17    
19.  孙贺东. 基于数值模型的气井现代产量递减分析及动态预测. 石油学报,2017,38(10):1194-1199 CSCD被引 9    
20.  Ilk D. A deconvolution method based on cumulative production for continuously measured flowrate and pressure data. SPE111269,2007 CSCD被引 1    
引证文献 1

1 计秉玉 对油气藏工程研究方法发展趋势的几点认识 石油学报,2020,41(12):1774-1778
CSCD被引 13

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号