帮助 关于我们

返回检索结果

太极计划星间激光通信参数设计及实验验证
Parameter Design and Experimental Verification of Taiji Program Inter-Satellite Laser Communication

查看参考文献23篇

张艺斌 1,2,3,4   邓汝杰 1,2,3,4   刘河山 4   罗子人 2,4 *  
文摘 在太极计划中,三颗卫星将构成边长为300万km的三角形星座。为完成卫星间的信息交互,需要在星间干涉链路中加入激光通信。笔者从太极计划星间通信的需求出发,基于目前的相位计系统,提出了太极计划星间激光通信方案及系统参数的设计。为验证所设计参数的合理性以及通信系统的性能,基于自研板卡,搭建了电子学模拟系统及光学验证系统。在发送端将通信码与伪随机码以直接序列扩频的方式调制至激光相位,通过激光链路将信息发送至接收端,并采用锁相环及延迟环对其进行解析,完成通信功能。测试结果表明,所设计的通信系统参数较为合理,能够与相位计系统有效融合,在通信速率为19.5 kb/s的条件下,通信系统的误码率优于10-6,可为太极计划的相关参数设计提供参考。
其他语种文摘 Objective The Taiji program consists of three satellites that form an equilateral triangle with a side length of 3 million kilometer. The main scientific goal is to detect gravitational wave sources, such as the merger of medium-mass black holes and the rotation of medium-mass black hole binaries. The Taiji program uses laser interferometry to measure small shifts between stars caused by gravitational waves. Limited by satellite loads, laser interferometry systems must be highly integrated with the measurement systems. First, the laser communication link transmits data from the two satellites to the main spacecraft. After preprocessing is completed, the scientific data are transmitted to the ground station. The main requirement of the Taiji program laser communication is real-time communication, with a bit error rate of less than 10-6 and a rate of more than 15 kb/s. To meet the needs of the Taiji program inter-satellite laser communication, a communication scheme and system parameter design based on a phase meter system are proposed in this paper. An experimental verification system is planned to be set up under laboratory conditions to verify the rationality of the designed parameters and implementation of the scheme. Methods The validity of the proposed method was verified under laboratory conditions by setting up a ground electronic simulation system. To more closely simulate the actual transmission process of inter-satellite laser communication links, a ground optical verification system was built in this study. To fully simulate the actual situation of inter-satellite laser communication, the ground optical verification system was divided into three parts: spread-spectrum modulation, link transmission, and phase demodulation. Modulation and demodulation were completed on K7-FPGA(field programmable gate array, FPGA). Link transmission was performed using a laser with a wavelength of 1064 nm. In this experiment, the communication codes and the pseudo-random noise(PRN) code were modulated to the laser phase using a direct sequence spread spectrum at the transmitting end. This information was sent to the receiving end through a laser link. At the receiving end, a phase-locked loop(PLL) was used for carrier synchronization, and a delay-locked loop(DLL) for code synchronization, completing the communication function. Results and Discussions The demodulation performance is evaluated in this study by measuring the error rate of the mixed code parsing. The mixed codes are transmitted in three experiments, and the correct and incorrect numbers are counted. The test results indicate that the average error probabilities of the electronic and optical systems are 0.20% and 1.3%, respectively. This is mainly because the filter has a wide transition band. If the sampling decision is made in the transition zone, phase ambiguity can easily occur. This phenomenon leads to sampling decision errors that affect the demodulation performance. In addition, the background noise caused by the components and environment of the system is the main cause of mixed code errors, which are widely found in optical and electronic systems. Noise in an optical system is significantly higher than that in an electronic system. Therefore, the error rate of mixed code analysis in an optical verification system is much higher than that in an electronic system. The communication bit error rate was then measured to evaluate the communication performance of the entire system. The test results show that when 106 codes were transmitted by the electronic simulation and optical verification systems, the number of correct codes received by the three tests is 106. The experimental results show that a ground verification system based on the requirements of the Taiji program inter-satellite laser communication can be effectively integrated with a phase meter system.
来源 中国激光 ,2023,50(23):2306002 【核心库】
DOI 10.3788/CJL221407
关键词 光通信 ; 太极计划 ; 系统参数 ; 光学验证 ; 直接序列扩频
地址

1. 中国科学院国家空间科学中心, 北京, 100190  

2. 国科大杭州高等研究院, 浙江, 杭州, 310024  

3. 中国科学院大学, 北京, 100049  

4. 中国科学院力学研究所, 北京, 100190

语种 中文
文献类型 研究性论文
ISSN 0258-7025
学科 电子技术、通信技术
基金 国家重点研发计划重点专项
文献收藏号 CSCD:7637426

参考文献 共 23 共2页

1.  刘河山. 空间引力波探测中的绝对距离测量及通信技术. 中国光学,2019,12(3):486-492 CSCD被引 13    
2.  邓汝杰. 太极计划中的星间激光测距地面电子学验证. 中国光学,2022:1-13 CSCD被引 1    
3.  赵梦阳. 太极计划激光链路构建地面模拟控制系统研究. 中国激光,2023,50(17):1706003 CSCD被引 2    
4.  黄双林. 空间引力波探测:天文学的一个新窗口. 中国科学:物理学力学天文学,2017,47(1):38-59 CSCD被引 4    
5.  罗子人. 地球重力场空间探测:回顾与展望. 力学进展,2014,44:291-337 CSCD被引 6    
6.  罗俊. 天琴计划简介. 中山大学学报(自然科学版),2021,60(S1):1-19 CSCD被引 23    
7.  Sweeney D. Laser communications for LISA and the university of Florida LISA interferometry simulator,2022 CSCD被引 1    
8.  曾凤娇. 水下激光通信系统研究进展. 激光与光电子学进展,2021,58(3):0300002 CSCD被引 10    
9.  Esteban Delgado J J. Laser ranging and data communication for the laser interferometer space antenna,2012 CSCD被引 1    
10.  李佳蔚. 星地相干光通信中的自适应光学系统带宽研究. 中国激光,2016,43(8):0806003 CSCD被引 5    
11.  Esteban J J. Experimental demonstration of weak-light laser ranging and data communication for LISA. Optics Express,2011,19(17):15937-15946 CSCD被引 8    
12.  Gardner F. A BPSK/QPSK timing-error detector for sampled receivers. IEEE Transactions on Communications,1986,34(5):423-429 CSCD被引 64    
13.  邱子胜. 基于伪随机码相位调制和相干探测的激光测距技术研究. 激光与光电子学进展,2018,55(5):052801 CSCD被引 7    
14.  郭一岩. 面向激光测距的大功率混沌激光. 激光与光电子学进展,2022,59(21):2114004 CSCD被引 3    
15.  韩爽. 空间引力波探测相位计测试系统设计与实现,2022 CSCD被引 2    
16.  Goodwin F E. A review of operational laser communication systems. Proceedings of the IEEE,1970,58(10):1746-1752 CSCD被引 7    
17.  Caplan D O. Laser communication transmitter and receiver design. Free-space laser communications. Optical and fiber communications reports. 2,2007:109-246 CSCD被引 1    
18.  Boroson D M. Overview and results of the lunar laser communication demonstration. Proceedings of SPIE. 8971,2014:89710S CSCD被引 10    
19.  Kim K. Digital modulation classification: the BPSK versus QPSK case. MILCOM 88, 21st Century Military Communications-What' s Possible? Military Communications Conference, October 23-26, 1988, San Diego, CA, USA,2002:431-436 CSCD被引 1    
20.  白杨杨. 空间激光通信组网从光端机控制技术研究. 光学学报,2021,41(14):1406001 CSCD被引 7    
引证文献 5

1 刘超 深空激光通信研究进展及发展方向(特邀) 激光与光电子学进展,2024,61(7):0706007
CSCD被引 0 次

2 尹鹏 基于YOLOv5s的卫星光通信初始捕获方法(特邀) 激光与光电子学进展,2024,61(7):0706012
CSCD被引 0 次

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号