激光测距中APD阵列探测信噪比分析
Signal-to-noise ratio analysis on APD arrays in laser ranging
查看参考文献18篇
文摘
|
APD阵列可提高光子探测效率,然而在回波探测概率提高的同时提高噪声探测概率,因此需合理选择阵列单元数以提高探测信噪比。根据回波和噪声在距离门内的分布情况,结合光子探测概率,建立了盖革模式下APD阵列探测信噪比随阵列单元数的变化模型。讨论了回波光子数、背景噪声强度、回波在门控内位置、占空比等因素对探测信噪比的影响。分析结果表明,提高回波光子数、探测器占空比、轨道预报精度有助于增加APD阵列的探测信噪比;4元APD阵列适用于回波光子数小于0.1、门控内噪声光子数小于1的观测情况,而回波和噪声强度较强时,25元APD阵列能够取得相对较优的探测信噪比。建立的APD阵列探测信噪比模型有助于快速选择APD阵列单元数以达到较高探测信噪比。 |
其他语种文摘
|
APD arrays provide an efficient method for photon detection probability improvement. However, the noise detection probability increases as well as the echo detection probability. Properly choosing the unit number of APD arrays means a lot for signal-to-noise ratio (SNR) improvement. In this article, according to the photon detection probability in the Geiger-mode, the SNR model with the unit number N was established based on the distribution of echoes and noise within the range gate. Effects of number of echoes, noise rate, location of echoes and fill factor were discussed. Analytical results show that larger number of echoes, higher fill factor and more precise orbit prediction help increase the SNR with APD arrays. 4 -unit APD arrays are enough for laser ranging with echo number smaller than 0.1 and noise number within the range gate smaller than 1, while when there are large number of echoes and noise, 25-unit APD arrays will achieve a better SNR. The established SNR model for APD arrays will help for proper unit number selection to achieve the best SNR. |
来源
|
红外与激光工程
,2017,46(3):0306001-1-0306001-8 【核心库】
|
DOI
|
10.3788/IRLA201746.0306001
|
关键词
|
激光测距
;
APD阵列
;
探测信噪比
;
探测概率
;
占空比
|
地址
|
1.
北京跟踪与通信技术研究所空间目标测量重点实验室, 北京, 100094
2.
中国科学院云南天文台, 云南, 昆明, 650011
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2276 |
学科
|
测绘学 |
基金
|
国家自然科学基金
;
国家863计划
|
文献收藏号
|
CSCD:5957282
|
参考文献 共
18
共1页
|
1.
Sosnica K. Satellite laser ranging to GPS and GLONASS.
Journal of Geodesy,2015,89(7):725-743
|
CSCD被引
7
次
|
|
|
|
2.
李密. 高精度激光脉冲测距技术.
红外与激光工程,2011,40(8):1469-1473
|
CSCD被引
11
次
|
|
|
|
3.
Li H. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging.
Optics Express,2016,24(4):3535-3542
|
CSCD被引
26
次
|
|
|
|
4.
张忠萍. 双望远镜的空间碎片激光测距试验研究.
红外与激光工程,2016,45(1):0102002
|
CSCD被引
11
次
|
|
|
|
5.
李明. 基于有效回波概率估计空间碎片激光测距系统作用距离.
光学精密工程,2016,24(2):260-267
|
CSCD被引
8
次
|
|
|
|
6.
Sun H. Experiment on diffuse reflection laser ranging to space debris and data analysis.
Research in Astronomy and Astrophysics,2015,15(6):909-920
|
CSCD被引
7
次
|
|
|
|
7.
徐正平. 直接测距型无扫描激光主动成像验证系统.
光学精密工程,2016,24(2):251-259
|
CSCD被引
14
次
|
|
|
|
8.
王锐. 激光距离选通成像门宽对图像信噪比影响.
中国光学,2015,8(6):951-956
|
CSCD被引
8
次
|
|
|
|
9.
Kirchner Georg. Pushing Graz SLR from 2 kHz to 10 kHz repetition rate.
Institute for Space Research Austrian Academy of Sciences, International Workshop on Laser Ranging,2011
|
CSCD被引
1
次
|
|
|
|
10.
Kang Y. Dark count probability and quantum efficiency of avalanche photodiodes for singlephoton detection.
Applied Physics Letters,2003,83(14):2955-2957
|
CSCD被引
13
次
|
|
|
|
11.
Albota M A. Threedimensional imaging laser radars with Geiger-mode avalanche photodiode arrays.
Lincoln Laboratory Journal,2002,13(2):351-370
|
CSCD被引
19
次
|
|
|
|
12.
Henriksson M. Detection probabilities for photon-counting avalanche photodiodes applied to a laser radar system.
Applied Optics,2005,44(24):5140-5147
|
CSCD被引
22
次
|
|
|
|
13.
寇松峰. 基于4元APD阵列的激光测距技术研究.
激光与红外,2008,38(6):537-540
|
CSCD被引
8
次
|
|
|
|
14.
徐璐. 盖革模式雪崩光电二极管激光雷达累积探测性能的研究.
中国激光,2012,39(4):200-205
|
CSCD被引
3
次
|
|
|
|
15.
徐璐. 四Gm-APD探测器提高激光雷达探测性能的研究.
红外与激光工程,2015,44(9):2583-2587
|
CSCD被引
4
次
|
|
|
|
16.
Luo H. Maximum detection range limitation of pulse laser radar with Geiger-mode avalanche photodiode array.
Journal of Modern Optics,2015,62(9):761-768
|
CSCD被引
2
次
|
|
|
|
17.
翟东升. 基于G-APD 阵列的卫星激光测距系统探测性能分析.
中国激光,2015,42(6):266-272
|
CSCD被引
3
次
|
|
|
|
18.
Pellegrini S. Laser-based distance measurement using picosecond resolution timecorrelated single-photon counting.
Measurement Science and Technology,2000,11(6):712-716
|
CSCD被引
26
次
|
|
|
|
|