SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究
Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution
查看参考文献25篇
文摘
|
采用表面机械研磨(SMAT)技术在S31254超级奥氏体不锈钢表面制备得到了梯度结构,通过微结构分析及电化学实验方法,对梯度结构进行详细表征并研究其不同层深处的腐蚀行为。结果表明:S31254不锈钢经过SMAT处理后获得了由两侧梯度层和中心粗晶层组成的结构,在梯度层中,纳米尺度变形孪晶的密度在厚度方向上呈梯度分布。逐层进行的电化学实验表明,在距样品表面80 μm处耐蚀性最好,原因是较高的孪晶密度和较光滑的表面提高了耐蚀性能。 |
其他语种文摘
|
A kind of gradient structure on the surface of S31254 super austenitic stainless steel was prepared by surface mechanical attrition treatment (SMAT) technology.The gradient structure was characterized by microstructural analysis and electrochemical test,while the variation of corrosion characteristics along the depth of the gradient structure was also studied in 10%NaCl solution.The results show that after SMAT treatment,the surface of S31254 steel emerged a structure composed of two gradient layers,while a coarse-grained layer inserted in between the two layers.In the gradient layer,the density of the nanoscale deformation twins shows a gradient distribution along the depth direction.Through mechanically thinning the gradient structure layer by layer and followed by electrochemical detection in the NaCl solution,it is revealed that nearby the location at depth of 80 μm exhibits the best corrosion resistance,which may be ascribed to that the prepared surface was smoother with higher twin density. |
来源
|
中国腐蚀与防护学报
,2022,42(6):973-978 【核心库】
|
DOI
|
10.11902/1005.4537.2021.349
|
关键词
|
超级奥氏体不锈钢
;
表面机械研磨
;
梯度结构
;
纳米孪晶
;
电化学腐蚀
|
地址
|
1.
太原理工大学材料科学与工程学院, 太原, 030024
2.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
3.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-4537 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7304038
|
参考文献 共
25
共2页
|
1.
Wu C C. Inverse effect of strain rate on mechanical behavior and phase transformation of superaustenitic stainless steel.
Scr. Mater,2007,56:717
|
CSCD被引
12
次
|
|
|
|
2.
Abd El Meguid E A. Critical pitting temperature for type 254 SMO stainless steel in chloride solutions.
Corros. Sci,2007,49:263
|
CSCD被引
8
次
|
|
|
|
3.
徐玉强. 超级奥氏体不锈钢254SMo焊接工艺.
电焊机,2013,43(5):142
|
CSCD被引
1
次
|
|
|
|
4.
郑世平. 6%Mo超级奥氏体不锈钢耐蚀特性及其焊接.
中国化工装备,2013,15(4):26
|
CSCD被引
4
次
|
|
|
|
5.
白永杰. 超级奥氏体不锈钢254Smo焊接接头耐蚀性能.
焊接,2016(9):21
|
CSCD被引
1
次
|
|
|
|
6.
王长罡. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究.
中国腐蚀与防护学报,2019,39:43
|
CSCD被引
4
次
|
|
|
|
7.
孙长庆. 超级奥氏体不锈钢的发展,性能与应用(上).
化工设备设计,1999,36(6):38
|
CSCD被引
19
次
|
|
|
|
8.
赵康. 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为研究.
中国腐蚀与防护学报,2021,41:493
|
CSCD被引
4
次
|
|
|
|
9.
伊璞. 新型奥氏体不锈钢高温NaCl腐蚀行为研究.
中国腐蚀与防护学报,2022,42:288
|
CSCD被引
12
次
|
|
|
|
10.
卢柯. 梯度纳米结构材料.
金属学报,2015,51:1
|
CSCD被引
70
次
|
|
|
|
11.
Hao Y W. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel.
J. Iron. Steel Res. Int,2009,16:68
|
CSCD被引
22
次
|
|
|
|
12.
Balusamy T. Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel.
Corros. Sci,2010,52:3826
|
CSCD被引
20
次
|
|
|
|
13.
Zhu K Y. Nanostructure formation mechanism of α-titanium using SMAT.
Acta Mater,2004,52:4101
|
CSCD被引
92
次
|
|
|
|
14.
Li J S. Microstructures and mechanical properties of a gradient nanostructured 316L stainless steel processed by rotationally accelerated shot peening.
Adv. Eng. Mater,2018,20:1800402
|
CSCD被引
3
次
|
|
|
|
15.
Wang H T. Architectured surface layer with a gradient nanotwinned structure in a Fe-Mn austenitic steel.
Scr. Mater,2013,68:22
|
CSCD被引
14
次
|
|
|
|
16.
Wang J J. Revealing the deformation mechanisms of nanograins in gradient nanostructured Cu and CuAl alloys under tension.
Acta Mater,2019,180:231
|
CSCD被引
6
次
|
|
|
|
17.
Lu K. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment.
Mater. Sci. Eng. A,2004,375/377:38
|
CSCD被引
195
次
|
|
|
|
18.
Liu X C. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel.
Science,2013,342:337
|
CSCD被引
81
次
|
|
|
|
19.
Hughes D A. Graded nanostructures produced by sliding and exhibiting universal behavior.
Phys. Rev. Lett,2001,87:135503
|
CSCD被引
11
次
|
|
|
|
20.
Wang X. Gradient Structured Copper by Rotationally Accelerated Shot Peening.
J. Mater. Sci. Technol,2017,33:758
|
CSCD被引
21
次
|
|
|
|
|