压缩-膨胀湍流边界层平均摩阻分解
Decomposition of mean friction drag in compression-expansion turbulent boundary layer
查看参考文献29篇
文摘
|
采用直接数值模拟对来流马赫数2.9、24°压缩-膨胀折角构型中激波与湍流边界层干扰问题进行了研究。重点关注膨胀折角法向高度对激波干扰区以及下游平板边界层流动的影响。研究发现,当高度足够大时,激波干扰区内未受下游膨胀波的影响,此时的流动特征与传统的压缩折角干扰构型一致。高度较小时,脱体剪切层的再附过程受到下游膨胀波的加速影响,导致再附点向上游移动,分离泡发生剧烈收缩。对上、下游平板湍流边界层应用了平均摩阻分解技术,比较了湍流边界层在平衡和非平衡状态下的差异。分析发现,膨胀折角区域的高摩阻现象主要与摩阻分解后的C_(f1)项与C_(f3)项相关。高度变化对C_(f1)项影响较小,而对C_(f2)项影响显著。高度变化体现在:下游平板上Gortler涡结构强度以及层流化现象对C_(f2)项贡献的差异。 |
其他语种文摘
|
The interaction between the shock wave with Mach number 2.9and the turbulent boundary layer in the configuration of 24°compression-expansion corners is investigated by using direct numerical simulation.The influence of normal height of the expansion corner on the shock wave interaction region and downstream boundary layer is analyzed.It is found that when the height is large enough,the shock wave interaction region is not affected by the downstream expansion wave,and the characteristics are consistent with those of the traditional compression corner configuration.While the height is small,the reattachment process of the detached shear layer is accelerated by the downstream expansion wave,which causes the reattachment point to move upstream and the separation bubble to shrink dramatically.The decomposition of mean friction drag is applied to the turbulent boundary layer of the upstream and downstream plates,and the difference between the turbulent boundary layer in equilibrium and nonequilibrium state is explored.It is found that the high friction in the expansion corner is mainly related to the C_(f1)term and C_(f3)term in the decomposition of mean friction drag.The height has little effect on the C_(f1) term,while significant effect on the C_(f2)term.Height variation is reflected in the contribution of the Gortler vortex and relaminar phenomenon on the downstream plate to the C_(f2)term. |
来源
|
航空学报
,2022,43(1):625915 【核心库】
|
DOI
|
10.7527/S1000-6893.2021.25915
|
关键词
|
激波/湍流边界层干扰
;
压缩-膨胀折角构型
;
直接数值模拟
;
平均摩阻分解
;
Gortler涡
|
地址
|
1.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
3.
中国空气动力研究与发展中心计算空气动力研究所, 绵阳, 621000
4.
中国空气动力研究与发展中心, 空气动力学国家重点实验室, 绵阳, 621000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6893 |
学科
|
数学;航空 |
基金
|
国家重点研发计划
;
国家自然科学基金
;
国家数值风洞工程
;
科学挑战专题
;
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:7150260
|
参考文献 共
29
共2页
|
1.
Ferri A.
Experimental results with airfoils tested in the high-speed tunnel at Guidonia: NACA-TM-946,1940
|
CSCD被引
2
次
|
|
|
|
2.
Dolling D S. Fifty years of shock-wave/boundary-layer interaction research:What next?.
AIAA Journal,2001,39(8):1517-1531
|
CSCD被引
69
次
|
|
|
|
3.
Settles G S. Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow.
AIAA Journal,1979,17(6):579-585
|
CSCD被引
20
次
|
|
|
|
4.
Dolling D S. Unsteadiness of the separation shock wave structure in a supersonic compression ramp flowfield.
AIAA Journal,1983,21(12):1628-1634
|
CSCD被引
12
次
|
|
|
|
5.
Dolling D S. Unsteadiness of the shock wave structure in attached and separated compression ramp flows.
Experiments in Fluids,1985,3(1):24-32
|
CSCD被引
9
次
|
|
|
|
6.
Bookey P.
New experimental data of STBLI at DNS/LES accessible Reynolds numbers:AIAA-2005-0309,2005
|
CSCD被引
1
次
|
|
|
|
7.
Wu M. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp.
AIAA Journal,2007,45(4):879-889
|
CSCD被引
39
次
|
|
|
|
8.
Li X L. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp.
Science China Physics, Mechanics and Astronomy,2010,53(9):1651-1658
|
CSCD被引
21
次
|
|
|
|
9.
Tong F L. Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls.
Journal of Turbulence,2017,18(6):569-588
|
CSCD被引
7
次
|
|
|
|
10.
Tong F L. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:Turning angle effects.
Computers &Fluids,2017,149:56-69
|
CSCD被引
19
次
|
|
|
|
11.
童福林. 高超声速激波湍流边界层干扰直接数值模拟研究.
力学学报,2018,50(2):197-208
|
CSCD被引
13
次
|
|
|
|
12.
Loginov M S. Large-eddy simulation of shock-wave/turbulent-boundarylayer interaction.
Journal of Fluid Mechanics,2006,565:135-169
|
CSCD被引
20
次
|
|
|
|
13.
Zheltovodov A A. Peculiarities of development and modeling possibilities of supersonic turbulent separated flows.
Separated Flows and Jets,1991:225-236
|
CSCD被引
1
次
|
|
|
|
14.
Grilli M. Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp.
International Journal of Heat and Fluid Flow,2013,42:79-93
|
CSCD被引
6
次
|
|
|
|
15.
Fang J. Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner.
Physics of Fluids,2015,27(12):125104
|
CSCD被引
12
次
|
|
|
|
16.
Ritos K. Computational aeroacoustics beneath high speed transitional and turbulent boundary layers.
Computers & Fluids,2020,203:104520
|
CSCD被引
2
次
|
|
|
|
17.
Fukagata K. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows.
Physics of Fluids,2002,14(11):L73-L76
|
CSCD被引
36
次
|
|
|
|
18.
Renard N. A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer.
Journal of Fluid Mechanics,2016,790:339-367
|
CSCD被引
12
次
|
|
|
|
19.
Li W P. Decomposition of the mean skin-friction drag in compressible turbulent channel flows.
Journal of Fluid Mechanics,2019,875:101-123
|
CSCD被引
14
次
|
|
|
|
20.
Martin M P. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence.
Journal of Computational Physics,2006,220(1):270-289
|
CSCD被引
47
次
|
|
|
|
|