高马赫数燃烧强化的激波风洞试验研究
SHOCK-TUNNEL EXPERIMENTAL STUDY OF COMBUSTION ENHANCEMENT METHODS FOR A HIGH-MACH-NUMBER SCRAMJET
查看参考文献31篇
文摘
|
基于中国科学院力学研究所的JF-24激波风洞,通过开展高马赫数超燃冲压发动机的直连试验,研究了高马赫数燃烧的强化方法以及燃料类型对燃烧的影响.试验段是采用凹腔结构的圆截面燃烧室,喷孔布置在隔离段,燃料分别是氢气和乙烯,当量比均为0.7.燃料喷注分别采用无支板和小支板两种构型,后者部分喷孔位于小支板顶部.两种构型均设置了流向近距双排喷孔,可分别进行单环和双环喷注.试验结果论证了飞行马赫数10.0条件下氢气和乙烯在超高速气流中的稳定燃烧性能.并且,相比于单环喷注,双环喷注以及补充小支板可以强化燃烧.推测其原因是双环射流和激波/分离结构的近距离交互作用很可能改善掺混,而补充小支板顶部喷注还能利用更多空气组织掺混.在同样采用双环耦合小支板顶部喷注的强化措施下,氢气与乙烯燃烧效率接近,但氢推力性能更优.这是因为较高热值氢的释热更多.此外,试验还证明了在当前来流条件下,释热受控于掺混,且高温离解效应限制释热上限.这是由于释热降低流速且提高静温,使高温离解的吸热效应更加显著. |
其他语种文摘
|
Based on the JF-24 high-enthalpy shock tunnel in Institute of Mechanics, Chinese Academy of Sciences, the current paper performed direct-connect combustion tests of a high-Mach-number scramjet engine to study high- Mach-number combustion enhancement methods and fuel types' effects. The test-section was a circular cross-section scramjet combustor with cavity structures, and fuel injectors were arranged in the isolator. Hydrogen and ethylene fuels were severally used in current tests at the same equivalence ratio of 0.7. Fuel injection utilized two different test-section configurations without and with small struts, respectively. Some injection holes of the latter configuration were located on the strut tops. For each configuration, two adjacent rings of injecting holes were arranged for single-ring and dualrings injections, respectively. Test results demonstrated that stabilized combustion performances of hydrogen and ethylene fuels in hypersonic flows under a Mach number flight condition. Meanwhile, compared to the singlering fuel injection method, dual-rings fuel injections and adding injections on small-strut tops were beneficial for combustion enhancements. The reason was speculated that interactions of adjacent fuel jets and shock/separation structures probably could improve fuel-air mixing, and additional fuel injection on small-strut tops meant more available air for mixing. Under the same combustion enhancement methods of dual-ring injections and additional small-strut top injections, hydrogen fuel generated better thrust performance than ethylene fuel, while their combustion efficiencies were similar. This was possibly because that the hydrogen fuel had a higher caloricity, and thus it could generate more heat release. Besides, test also verified that under the current high-enthalpy high-speed inflow condition, combustion heat release was controlled by fuel-air mixing processes, and meanwhile the upper limits of heat release was limited by hightemperature dissociation effects. This was because that heat release led to decreases of local flow speeds and increase flow temperatures. Consequently, high-temperature dissociation endothermic reactions would be more remarkable, resulting in decrease of heat release. |
来源
|
力学学报
,2022,54(5):1403-1413 【核心库】
|
DOI
|
10.6052/0459-1879-21-348
|
关键词
|
高马赫数
;
超声速燃烧
;
燃烧强化
;
小支板
;
JF-24激波风洞
|
地址
|
1.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7224111
|
参考文献 共
31
共2页
|
1.
Andreadis D. Scramjet engines enabling the seamless integration of air & space operation.
Industrial Physicist,2004,10(4):24-27
|
CSCD被引
3
次
|
|
|
|
2.
李旭彦. 超燃冲压发动机技术发展现状及相关建议.
科技中国,2019,2:5-8
|
CSCD被引
2
次
|
|
|
|
3.
卢洪波. 新建高焓激波风洞Ma = 8飞行模拟条件的实现与超燃实验.
气体物理,2019,4(5):13-24
|
CSCD被引
11
次
|
|
|
|
4.
姚轩宇. JF12激波风洞高Mach数超燃冲压发动机实验研究.
气体物理,2019,4(5):25-31
|
CSCD被引
9
次
|
|
|
|
5.
吴里银. 马赫数10超燃冲压发动机激波风洞实验研究.
推进技术,2021
|
CSCD被引
1
次
|
|
|
|
6.
Zhou G X. Optical diagnostics in a detonationdriven direct-connected circular combustor fueled with hydrogen for Mach 10 scramjet.
International Journal of Hydrogen Energy,2021,46(54):27801-27815
|
CSCD被引
6
次
|
|
|
|
7.
Grossman P M. Flush-wall, diamondshaped fuel injector for high Mach number scramjets.
Journal of Propulsion and Power,2008,24(2):259-266
|
CSCD被引
2
次
|
|
|
|
8.
Drozda T G. CFD analysis of mixing characteristics of several fuel injectors at hypervelocity flow conditions.
52nd AIAA/SAE/ASEE Joint Propulsion Conference,2016
|
CSCD被引
1
次
|
|
|
|
9.
Turner J C. Application of inlet injection to a three-dimensional scramjet at Mach 8.
AIAA Journal,2010,48(4):829-838
|
CSCD被引
10
次
|
|
|
|
10.
Capra B R. Porous versus porthole fuel injection in a radical farming scramjet: numerical analysis.
Journal of Propulsion and Power,2015,31(3):789-804
|
CSCD被引
5
次
|
|
|
|
11.
Landsberg W O. Enhanced supersonic combustion targeting combustor length reduction in a Mach 12 scramjet.
AIAA Journal,2018,56(10):3802-3807
|
CSCD被引
7
次
|
|
|
|
12.
Razzaqi S A. Hypervelocity experiments on oxygen enrichment in a hydrogen-fueled scramjet.
AIAA Journal,2011,49(7):1488-1497
|
CSCD被引
3
次
|
|
|
|
13.
Capra B R. Combustion enhancement in a scramjet engine using oxygen enrichment and porous fuel injection.
Journal of Fluid Mechanics,2015,767:173-198
|
CSCD被引
5
次
|
|
|
|
14.
Sunami T. Mach 8 ground tests of the hypermixer scramjet for HyShot-IV flight experiment.
14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference,2006
|
CSCD被引
2
次
|
|
|
|
15.
Denman Z J. Supersonic combustion of hydrocarbons in a shape-transitioning hypersonic engine.
Proceedings of the Combustion Institute,2017,36:2883-2891
|
CSCD被引
3
次
|
|
|
|
16.
李进平. 以高温燃气为试验介质的爆轰波风洞.
气体物理,2018,3(6):1-8
|
CSCD被引
4
次
|
|
|
|
17.
陆星宇. 爆轰驱动高能起爆技术实验研究.
中国科学,2019,49(3):311-319
|
CSCD被引
2
次
|
|
|
|
18.
Wang Y P. Starting process in a large-scale shock tunnel.
AIAA Journal,2016,54(4):1-10
|
CSCD被引
9
次
|
|
|
|
19.
Mcbride B J. NASA Glenn coefficients for calculating thermodynamic properties of individual species.
NASA/TP: 2002-211556
|
CSCD被引
1
次
|
|
|
|
20.
李进平. 激波/边界层相互作用诱导的激波风洞气体污染问题.
力学学报,2008,40(3):290-296
|
CSCD被引
1
次
|
|
|
|
|