帮助 关于我们

返回检索结果

缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响
Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy

查看参考文献38篇

刘天福 1   张滨 1 *   张均锋 2   徐强 3   宋竹满 4   张广平 4  
文摘 研究了缺口应力集中系数不同的深海潜水器耐压壳用TC4 ELI(Extra-low-interstitial)合金板材在恒总应变幅控制下的低周疲劳行为。结果表明,在应变幅较低(0.7%以下)和应变幅较高(0.8%和0.9%)条件下的光滑试样在循环初期分别发生了循环硬化和循环软化,而缺口试样在0.2%~0.7%应变幅条件下的循环初期均发生了循环硬化。通过循环载荷作用下材料滞回能的变化描述了TC4 ELI合金试样低周疲劳的损伤程度,得到了缺口应力集中系数与低周疲劳性能参数之间的关系,建立了相对裂纹萌生寿命预测模型。利用该模型能较好地预测缺口应力集中系数较低的TC4 ELI合金在高应变幅条件下的相对疲劳裂纹萌生寿命。
其他语种文摘 The low-cycle fatigue behavior of TC4 ELI (Extra-low-interstitial) alloy plates for pressure shells in deep-sea submersible with different notch stress concentration factors under constant total strain amplitude was investigated. The results indicate that cyclic harding and cyclic softening occur in the smooth specimens under the lower strain amplitude (≤0.7%) and higher strain amplitudes (0.8% and 0.9%), respectively, at the initial stage of the cyclic loading. While the cyclic hardening occurs in all the notched specimens under the strain amplitudes of 0.2% to 0.7% at the initial stage of the cyclic loading. Based on the variation of material hysteretic energy under the cyclic loading, a relative crack initiation life prediction model was established to describe the damage degree of TC4ELI alloy specimens under the low cycle fatigue loading. The relationship between notch stress concentration factors and low cycle fatigue performance parameters was also described. This model can effectively predict the relative fatigue crack initiation life of TC4ELI alloy with low notch stress concentration factor under high strain amplitude conditions.
来源 材料研究学报 ,2023,37(7):511-522 【核心库】
DOI 10.11901/1005.3093.2022.315
关键词 金属材料 ; TC4 ELI合金 ; 低周疲劳 ; 缺口 ; 应力集中系数 ; 疲劳寿命
地址

1. 东北大学材料科学与工程学院, 材料各向异性与织构教育部重点实验室, 沈阳, 110819  

2. 中国科学院力学研究所, 北京, 100190  

3. 中国船舶科学研究中心, 无锡, 214082  

4. 中国科学院金属研究所, 沈阳材料科学国家研究中心, 沈阳, 110016

语种 中文
文献类型 研究性论文
ISSN 1005-3093
学科 一般工业技术
基金 国家自然科学基金
文献收藏号 CSCD:7530380

参考文献 共 38 共2页

1.  Zhan Z X. Experiments and numerical simulations for the fatigue behavior of a novel TA2-TA15 titanium alloy fabricated by laser melting deposition. International Journal of Fatigue,2019,121:20 CSCD被引 6    
2.  He B B. Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting. Vacuum,2018,150:79 CSCD被引 13    
3.  Jiang X J. Ultrafine duplex microstructure and excellent mechanical properties of TC4 alloy via a novel thermo-mechanical treatment. Journal of Alloys and Compounds,2018,767:617 CSCD被引 5    
4.  Bai C Y. Microstructure evolution and cyclic deformation behavior of Ti-6Al-4 V alloy via electron beam melting during low cycle fatigue. International Journal of Fatigue,2022,159:106784 CSCD被引 4    
5.  Zhang M D. The effect of transformed β-phase on local area plastic deformation and dislocation characteristics of Ti6242s alloy under low-cycle fatigue and dwell fatigue. Materials Science and Engineering: A,2021,802:140643 CSCD被引 4    
6.  Carrion P E. Fatigue behavior of Ti-6Al-4V ELI including mean stress effects. International Journal of Fatigue,2017,99:87 CSCD被引 7    
7.  Galarraga H. Fatigue crack growth mechanisms at the microstructure scale in as-fabricated and heat treated Ti-6A1-4V ELI manufactured by electron beam melting (EBM). Engineering Fracture Mechanics,2017,176:263 CSCD被引 5    
8.  Galarraga H. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2017,685:417 CSCD被引 31    
9.  Benedetti M. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials,2017,71:295 CSCD被引 11    
10.  Zhang J. Overviews of investigation on submersible pressure hulls. Advances in Natural Science,2014,7(4):54 CSCD被引 12    
11.  袁亚. 国外水下预置无人作战装备研究. 战术导弹技术,2018(1):51 CSCD被引 1    
12.  李文跃. 大深度载人潜水器耐压壳结构研究现状及最新进展. 中国造船,2016,57(1):210 CSCD被引 25    
13.  张吟. 基于分层分压结构的新型潜水器耐压壳结构设计. 力学学报,2017,49(6):1231 CSCD被引 5    
14.  沈允生. 钛合金载人舱球壳试验压力和应力衡准取值研究. 海洋工程,2019,37(5):10 CSCD被引 2    
15.  Yu C L. Influence of initial imperfections on ultimate strength of spherical shells. International Journal of Naval Architecture and Ocean Engineering,2017,9(5):473 CSCD被引 3    
16.  Gao P F. Low-cycle fatigue behavior and property of TA15 titanium alloy with tri-modal microstructure. Materials Science & Engineering A,2018,736:1 CSCD被引 9    
17.  Pan X N. The mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure. Materials Science and Engineering: A,2020,798:140110 CSCD被引 6    
18.  Wang Y F. Effects of microstructure on fatigue crack propagation behavior in a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing. Journal of Materials Science & Technology,2019,35(2):403 CSCD被引 6    
19.  Guo P. Fatigue crack growth behavior in TC4-DT titanium alloy with different lamellar microstructures. Rare Metal Materials and Engineering,2015,44(2):277 CSCD被引 12    
20.  万明攀. TC4ELI合金显微组织对疲劳裂纹扩展速率的影响. 热加工工艺,2012,41(16):20 CSCD被引 1    
引证文献 1

1 滕全全 30CrNi2MoVA抓壳钩断裂失效分析 兵器材料科学与工程,2025,48(1):139-144
CSCD被引 0 次

显示所有1篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号