喷管对脉冲爆轰发动机性能的影响
NOZZLE EFFECTS ON PERFORMANCE OF PULSE DETONATION ENGINES
查看参考文献17篇
文摘
|
采用热力学循环分析方法, 从理论上推导了脉冲爆轰发动机(pulse detonation engine, PDE)不完全膨胀条件下的热效率公式, 并定量考察了不同燃烧室初始温度下热循环效率随出口压力比的变化, 研究表明气钵 膨胀越完全, 工质的热循环效率越高, 应用数值模拟方法分别研究了收缩一扩张喷管和扩张喷管, 比较了它们 对PDE推力和比冲的影响, 考察了它们在PDE各个循环阶段的作用.此外, 还分析了收缩一扩张喷管收缩段引起的反射激波的影响, 理论上反射激波会降低PDE热循环效率和比冲, 但当反射激波马赫数小于1.5时, 对PDE热循环效率的影响很小, 其正面作用占优 |
其他语种文摘
|
Thermal efficiency of pulse detonation engines (PDEs) was formulated with thermodynamic cycle analysis when the exhaust flow is not perfectly expanded, the quantitative relation of PDEs thermal efficiency and nozzle exit pressure ratio was examined under different initial combustor temperature, the closer the exhaust pressure gets to ambient pressure, the higher efficiency PDE could achieve. Effects of the CD-nozzle and the D-nozzle on PDE performance are investigated by numerical simulations; the obtained thrust and impulse of PDE are compared with each other for different cases, and nozzle effects on each period of the PDE cycle are also investigated. In addition, the influence of reflected shock waves from,the convergent section of a CD-nozzle is also studied to show that the reflected shock waves actually affect the thermodynamic cycle efficiency more or less, but when the shock Mach number, is less than l.5, PDE thermal .efficiency reduction is quite slight and the positive effects of nozzle are dominated |
来源
|
力学学报
,2011,43(1):1-10 【核心库】
|
关键词
|
脉冲爆轰发动机
;
热循环分析
;
喷管
;
激波反射
;
计算流体动力学
|
地址
|
中国科学院力学研究所, 中国科学院高温气体动力学重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金重点项目资助
|
文献收藏号
|
CSCD:4126870
|
参考文献 共
17
共1页
|
1.
Heiser WH. Thermodynamic cycle analysis of pulse detonation engines.
Journal of Propulsion and Power,2002,18(1):68-76
|
CSCD被引
31
次
|
|
|
|
2.
Roy GD. Pulse detonation propulsion: challenges, current status, and future perspective.
Progress in Energy and Combustion Science,2004,30(6):545-672
|
CSCD被引
92
次
|
|
|
|
3.
李牧. 脉冲爆震发动机喷管实验研究.
实验流体力学,2006,20(3):13-17
|
CSCD被引
6
次
|
|
|
|
4.
牟乾辉. 液体燃料脉冲爆轰发动机模拟试验研究.
第十届全国激波与激波管学术讨论会文集,2002:285-289
|
CSCD被引
1
次
|
|
|
|
5.
Cooper M. The Effect of Nozzle and Extension on Detonation Tube Performance.
38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, 7-10 July 2002, AIAA 2002-3628
|
CSCD被引
1
次
|
|
|
|
6.
Eidelman S.
Analysis of the pulse detonation engine efficiency. AIAA 90-0460
|
CSCD被引
1
次
|
|
|
|
7.
Wintenberger E. An Analytical Model for the Impulse of a Single-Cycle Pulse Detonation Engine.
Journal of Propulsion and Power,2003,19(1):22-38
|
CSCD被引
21
次
|
|
|
|
8.
Fickett W.
Detonation,1979
|
CSCD被引
25
次
|
|
|
|
9.
Wu YH. System performance and thermodynamics cycle analysis of air-breathing pulse detonation engines.
Journal of Propulsion and Power,2003,19(4):556-567
|
CSCD被引
3
次
|
|
|
|
10.
Wu YH.
System performance and thermodynamic cycle analysis of air-breathing pulse detonation engines. [PhD Thesis],2002
|
CSCD被引
1
次
|
|
|
|
11.
McBride BJ.
Computer program for calculation of complex chemical equilibrium compositions and applications.1311,1996
|
CSCD被引
1
次
|
|
|
|
12.
Endo T. A simplified analysis on a pulse detonation engine model.
Trans Jpn Soc Aeronaut Space Sci,2002,44(146):217-222
|
CSCD被引
7
次
|
|
|
|
13.
Whitham GB. A new approach to problems of shock dynamics part i two-dimensional problems.
J Fluid Mech,1957,2:145-171
|
CSCD被引
16
次
|
|
|
|
14.
Toro EF.
Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd ed,1999
|
CSCD被引
1
次
|
|
|
|
15.
Sun M. Conservative smoothing on an adaptive quadrilateral grid.
Journal of Computational Physics,1999,150(1):143-180
|
CSCD被引
29
次
|
|
|
|
16.
Yungster S.
Analysis of nozzle effects on pulse detonation engine performance. AIAA 2003-1316
|
CSCD被引
3
次
|
|
|
|
17.
Ma FH. Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines.
Journal of Propulsive and Power,2005,21(3):512-526
|
CSCD被引
1
次
|
|
|
|
|